Spectral behaviour of GMRES applied to singular systems
نویسنده
چکیده
The purpose of this paper is to develop a spectral analysis of the Hessenberg matrix obtained by the GMRES algorithm used for solving a linear system with a singular matrix. We prove that the singularity of the Hessenberg matrix depends on the nature of A and some others criteria like the zero eigenvalue multiplicity and the projection of the initial residual on particular subspaces. We also introduce some new results about the distinct kinds of breakdown which may occur in the algorithm when the system is singular.
منابع مشابه
GGMRES: A GMRES--type algorithm for solving singular linear equations with index one
In this paper, an algorithm based on the Drazin generalized conjugate residual (DGMRES) algorithm is proposed for computing the group-inverse solution of singular linear equations with index one. Numerical experiments show that the resulting group-inverse solution is reasonably accurate and its computation time is significantly less than that of group-inverse solution obtained by the DGMRES alg...
متن کاملRestoration of images with spatially variant blur by the GMRES method
The GMRES method is a popular iterative method for the solution of linear systems of equations with a large nonsymmetric nonsingular matrix. However, little is known about the performance of the GMRES method when the matrix of the linear system is of ill-determined rank, i.e., when the matrix has many singular values of different orders of magnitude close to the origin. Linear systems with such...
متن کاملConvergence of product integration method applied for numerical solution of linear weakly singular Volterra systems
We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.
متن کاملBreakdown-free GMRES for Singular Systems
GMRES is a popular iterative method for the solution of large linear systems of equations with a square nonsingular matrix. When the matrix is singular, GMRES may break down before an acceptable approximate solution has been determined. This paper discusses properties of GMRES solutions at breakdown and presents a modification of GMRES to overcome the breakdown.
متن کاملGmres on (nearly) Singular Systems
We consider the behavior of the GMRES method for solving a linear system Ax = b when A is singular or nearly so, i.e., ill conditioned. The (near) singularity of A may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular A, we give conditions under which the GMRES iterates converge safely to a least-squares solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 27 شماره
صفحات -
تاریخ انتشار 2007