A generative probability model of joint label fusion for multi-atlas based brain segmentation

نویسندگان

  • Guorong Wu
  • Qian Wang
  • Daoqiang Zhang
  • Feiping Nie
  • Heng Huang
  • Dinggang Shen
چکیده

Automated labeling of anatomical structures in medical images is very important in many neuroscience studies. Recently, patch-based labeling has been widely investigated to alleviate the possible mis-alignment when registering atlases to the target image. However, the weights used for label fusion from the registered atlases are generally computed independently and thus lack the capability of preventing the ambiguous atlas patches from contributing to the label fusion. More critically, these weights are often calculated based only on the simple patch similarity, thus not necessarily providing optimal solution for label fusion. To address these limitations, we propose a generative probability model to describe the procedure of label fusion in a multi-atlas scenario, for the goal of labeling each point in the target image by the best representative atlas patches that also have the largest labeling unanimity in labeling the underlying point correctly. Specifically, sparsity constraint is imposed upon label fusion weights, in order to select a small number of atlas patches that best represent the underlying target patch, thus reducing the risks of including the misleading atlas patches. The labeling unanimity among atlas patches is achieved by exploring their dependencies, where we model these dependencies as the joint probability of each pair of atlas patches in correctly predicting the labels, by analyzing the correlation of their morphological error patterns and also the labeling consensus among atlases. The patch dependencies will be further recursively updated based on the latest labeling results to correct the possible labeling errors, which falls to the Expectation Maximization (EM) framework. To demonstrate the labeling performance, we have comprehensively evaluated our patch-based labeling method on the whole brain parcellation and hippocampus segmentation. Promising labeling results have been achieved with comparison to the conventional patch-based labeling method, indicating the potential application of the proposed method in the future clinical studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unified framework for cross-modality multi-atlas segmentation of brain MRI

Multi-atlas label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. A standard label fusion algorithm relies on independently computed pairwise registrations between individual atlases and the (target) image to be segmented. These registrations are then used to propagate the atlas labels to the target space and fuse them into a single fin...

متن کامل

A Generative Model for Probabilistic Label Fusion of Multimodal Data

The maturity of registration methods, in combination with the increasing processing power of computers, has made multi-atlas segmentation methods practical. The problem of merging the deformed label maps from the atlases is known as label fusion. Even though label fusion has been well studied for intramodality scenarios, it remains relatively unexplored when the nature of the target data is mul...

متن کامل

Automatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion

. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Manual image segmentation 2.2 Automatic image segmentation 2.3 Multi-atlas image segmentation 2.4 Label Fusion 2.5 Atlas selection 2.6 Automatic Optimum Atlas Selection (OAS) 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation

Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a c...

متن کامل

4D Multi-atlas Label Fusion Using Longitudinal Images

Longitudinal reproducibility is an essential concern in automated medical image segmentation, yet has proven to be an elusive objective as manual brain structure tracings have shown more than 10% variability. To improve reproducibility, longitudinal segmentation (4D) approaches have been investigated to reconcile temporal variations with traditional 3D approaches. In the past decade, multi-atla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2014