A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in the Magnetic Field: Cylindrical Coordinates
نویسندگان
چکیده
The boundary problem in cylindrical coordinates for the Schrödinger equation describing a hydrogen-like atom in a strong homogeneous magnetic field is reduced to the problem for a set of the longitudinal equations in the framework of the Kantorovich method. The effective potentials of these equations are given by integrals over transversal variable of a product of transverse basis functions depending on the longitudinal variable as a parameter and their first derivatives with respect to the parameter. A symbolic-numerical algorithm for evaluating the transverse basis functions and corresponding eigenvalues which depend on the parameter, their derivatives with respect to the parameter and corresponded effective potentials is presented. The efficiency and accuracy of the algorithm and of the numerical scheme derived are confirmed by computations of eigenenergies and eigenfunctions for the low-excited states of a hydrogen atom in the strong homogeneous magnetic field.
منابع مشابه
Symbolic-Numerical Algorithms for Solving Parabolic Quantum Well Problem with Hydrogen-Like Impurity
For parabolic quantum well problem with hydrogen-like impurity a two-dimensional boundary-value problem is formulated in spherical coordinates at fixed magnetic quantum number. Calculational scheme using modified angular prolate spheroidal functions is presented. Symbolic-numerical algorithms for solving the problem are elaborated. The efficiency of the algorithms and their implementation is de...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملAn Exact Solution for Classic Coupled Magneto-Thermo-Elasticity in Cylindrical Coordinates
In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body fo...
متن کاملSolving Single Phase Fluid Flow Instability Equations Using Chebyshev Tau- QZ Polynomial
In this article the instability of single phase flow in a circular pipe from laminar to turbulence regime has been investigated. To this end, after finding boundary conditions and equation related to instability of flow in cylindrical coordination system, which is called eigenvalue Orr Sommerfeld equation, the solution method for these equation has been investigated. In this article Chebyshev p...
متن کاملFlow simulation of gallium in a cylindrical annulus in the presence of a magnetic field for improving the casting process
Free convection flow in an enclosure filled with a congealing melt leads to the product with a nonuniform structure involving large grains. The convective flows are decreased by applying an appropriate magnetic field, obtaining uniform and small grain structures. In this work, using the finite volume method, we investigated the application of a magnetic field to the convective heat transfer and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007