A ug 2 00 6 FULL HEAPS AND REPRESENTATIONS OF AFFINE WEYL GROUPS
نویسنده
چکیده
We use the author's combinatorial theory of full heaps to categorify the action of a large class of Weyl groups on their root systems, and thus to give an elementary and uniform construction of a family of faithful permutation representations of Weyl groups. Examples include the standard representations of affine Weyl groups as permutations of Z and geometrical examples such as the realization of the Weyl group of type E 6 as permutations of 27 lines on a cubic surface; in the latter case, we also show how to recover the incidence relations between the lines from the structure of the heap. Another class of examples involves the action of certain Weyl groups on sets of pairs (t, f), where t ∈ Z and f is a function from a suitably chosen set to the two-element set {+, −}. Each of the permutation representations corresponds to a module for a Kac–Moody algebra, and gives an explicit basis for it.
منابع مشابه
6 Full Heaps and Representations of Affine Weyl Groups
We use the author's combinatorial theory of full heaps to categorify the action of a large class of Weyl groups on their root systems, and thus to give an elementary and uniform construction of a family of faithful permutation representations of Weyl groups. Examples include the standard representations of affine Weyl groups as permutations of Z and geometrical examples such as the realization ...
متن کاملFull Heaps and Representations of Affine Weyl Groups
We use the author’s combinatorial theory of full heaps to categorify the action of a large class of Weyl groups on their root systems, and thus to give an elementary and uniform construction of a family of faithful permutation representations of Weyl groups. Examples include the standard representations of affine Weyl groups as permutations of Z and geometrical examples such as the realization ...
متن کاملFull Heaps and Representations of Affine Kac–moody Algebras
We give a combinatorial construction, not involving a presentation, of almost all untwisted affine Kac–Moody algebras modulo their onedimensional centres in terms of signed raising and lowering operators on a certain distributive lattice B. The lattice B is constructed combinatorially as a set of ideals of a “full heap” over the Dynkin diagram, which leads to a kind of categorification of the p...
متن کاملCarryless Arithmetic Mod 10
Forms of Nim have been played since antiquity and a complete theory was published as early as 1902 (see [3]). Martin Gardner described the game in one of his earliest columns [7] and returned to it many times over the years ([8–16]). Central to the analysis of Nim is Nim-addition. The Nim-sum is calculated by writing the terms in base 2 and adding the columns mod 2, with no carries. A Nim posit...
متن کاملPii: S0031-3203(97)00097-6
1. Our definition of the different types of matching were derived from references 4, 6* and elaborated in Section 4. Reference 6 was omitted inadvertently in the introduction and in Section 4. Most of our work was done during the 1989—1990 academic year. At that time we only had the manuscript version of Ref. [1] available to us. As noted in our paper, we only presented a restricted form of typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006