Increased Prediction Accuracy in Wheat Breeding Trials Using a Marker × Environment Interaction Genomic Selection Model
نویسندگان
چکیده
Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates of selection. Originally, these models were developed without considering genotype × environment interaction(G×E). Several authors have proposed extensions of the single-environment GS model that accommodate G×E using either covariance functions or environmental covariates. In this study, we model G×E using a marker × environment interaction (M×E) GS model; the approach is conceptually simple and can be implemented with existing GS software. We discuss how the model can be implemented by using an explicit regression of phenotypes on markers or using co-variance structures (a genomic best linear unbiased prediction-type model). We used the M×E model to analyze three CIMMYT wheat data sets (W1, W2, and W3), where more than 1000 lines were genotyped using genotyping-by-sequencing and evaluated at CIMMYT's research station in Ciudad Obregon, Mexico, under simulated environmental conditions that covered different irrigation levels, sowing dates and planting systems. We compared the M×E model with a stratified (i.e., within-environment) analysis and with a standard (across-environment) GS model that assumes that effects are constant across environments (i.e., ignoring G×E). The prediction accuracy of the M×E model was substantially greater of that of an across-environment analysis that ignores G×E. Depending on the prediction problem, the M×E model had either similar or greater levels of prediction accuracy than the stratified analyses. The M×E model decomposes marker effects and genomic values into components that are stable across environments (main effects) and others that are environment-specific (interactions). Therefore, in principle, the interaction model could shed light over which variants have effects that are stable across environments and which ones are responsible for G×E. The data set and the scripts required to reproduce the analysis are publicly available as Supporting Information.
منابع مشابه
Comparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملGENOMIC SELECTION Genomic Selection in Multi-environment Crop Trials
Genomic selection in crop breeding introduces modeling challenges not found in animal studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible single-stage genomic selection approach that resolves these issues. Our linear mixed ...
متن کاملOptimizing Training Population Data and Validation of Genomic Selection for Economic Traits in Soft Winter Wheat
Genomic selection (GS) is a breeding tool that estimates breeding values (GEBVs) of individuals based solely on marker data by using a model built using phenotypic and marker data from a training population (TP). The effectiveness of GS increases as the correlation of GEBVs and phenotypes (accuracy) increases. Using phenotypic and genotypic data from a TP of 470 soft winter wheat lines, we asse...
متن کاملGenomic Prediction of Quantitative Traits in Plant Breeding Using Molecular Markers and Pedigree
ABSTRACT The availability of thousands of genome wide molecular markers has made possible the use of genomic selection in plants and animals. However, the evaluation of models for genomic selection in plant breeding populations is very limited. In this study, we provide an overview of several models for genomic selection, whose predictive ability we investigated using two plant data sets. One d...
متن کاملCanopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat
Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015