Nonexistence of Random Gradient Gibbs Measures in Continuous Interface

نویسندگان

  • Aernout C. D. van Enter
  • Christof Külske
چکیده

We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are " gradient Gibbs measures " describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications

We study (discretized) “random surfaces,” which are random functions from Z (or large subsets of Z) to E, where E is Z or R. Their laws are determined by convex, nearest-neighbor, gradient Gibbs potentials that are invariant under translation by a full-rank sublattice L of Z; they include many discrete and continuous height function models (e.g., domino tilings, square ice, the harmonic crystal...

متن کامل

Dissolution or Growth of a Liquid Drop via Phase-Field Ternary Mixture Model Based on the Non-Random, Two-Liquid Equation

We simulate the diffusion-driven dissolution or growth of a single-component liquid drop embedded in a continuous phase of a binary liquid. Our theoretical approach follows a diffuse-interface model of partially miscible ternary liquid mixtures that incorporates the non-random, two-liquid (NRTL) equation as a submodel for the enthalpic (so-called excess) component of the Gibbs energy of mixing,...

متن کامل

Thermodynamic Formalism for Random Countable Markov Shifts

We introduce a relative Gurevich pressure for random countable topologically mixing Markov shifts. It is shown that the relative variational principle holds for this notion of pressure. We also prove a relative RuellePerron-Frobenius theorem which enables us to construct a wealth of invariant Gibbs measures for locally fiber Hölder continuous functions. This is accomplished via a new constructi...

متن کامل

Random Surfaces

We study the statistical physical properties of (discretized) “random surfaces,” which are random functions from Z (or large subsets of Z) to E, where E is Z or R. Their laws are determined by convex, nearest-neighbor, gradient Gibbs potentials that are invariant under translation by a full-rank sublattice L of Z; they include many discrete and continuous height function models (e.g., domino ti...

متن کامل

Local Expectation Gradients for Black Box Variational Inference

We introduce local expectation gradients which is a general purpose stochastic variational inference algorithm for constructing stochastic gradients by sampling from the variational distribution. This algorithm divides the problem of estimating the stochastic gradients over multiple variational parameters into smaller sub-tasks so that each sub-task explores intelligently the most relevant part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008