Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation.
نویسندگان
چکیده
When a capillary is inserted into a liquid, the liquid will rapidly flow into it. This phenomenon, well studied and understood on the macroscale, is investigated by molecular dynamics simulations for coarse-grained models of nanotubes. Both a simple Lennard-Jones fluid and a model for a polymer melt are considered. In both cases after a transient period (of a few nanoseconds) the meniscus rises according to a (time)1/2 law. For the polymer melt, however, we find that the capillary flow exhibits a slip length delta, comparable in size with the nanotube radius R. We show that a consistent description of the imbibition process in nanotubes is only possible upon modification of the Lucas-Washburn law which takes explicitly into account the slip length delta. We also demonstrate that the velocity field of the rising fluid close to the interface is not a simple diffusive spreading.
منابع مشابه
Capillary rise of water in hydrophilic nanopores.
We report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5 nm and 5 nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16 h investigated. Provided we assume two preadsorbed strongly bound layers of water molecules...
متن کاملSpontaneous imbibition in nanopores of different roughness and wettability.
The spontaneous imbibition of liquid in nanopores of different roughness is investigated using coarse grain molecular dynamics (MD) simulation. The numerical model is presented and the simplifying assumptions are discussed in detail. The molecular-kinetic theory introduced by Blake is used to describe the effect of dynamic contact angle on fluid imbibition. The capillary roughness is modeled us...
متن کاملAn analytic solution of capillary rise restrained by gravity.
We derive an analytic solution for the capillary rise of liquids in a cylindrical tube or a porous medium in terms of height h as a function of time t. The implicit t(h) solution by Washburn is the basis for these calculations and the Lambert W function is used for its mathematical rearrangement. The original equation is derived out of the 1D momentum conservation equation and features viscous ...
متن کاملPrediction of Time of Capillary Rise in Porous Media Using Artificial Neural Network (ANN)
An Artificial Neural Network (ANN) was used to analyse the capillary rise in porous media. Wetting experiments were performed with fifteen liquids and fifteen different powders. The liquids covered a wide range of surface tension ( 15.45-71.99 mJ/m2 ) and viscosity (0.25-21 mPa.s). The powders also provided an acceptable range of particle size (0.012-45 μm) and surface free...
متن کاملAnalytical approach for the Lucas-Washburn equation.
Porous media can be characterized by studying the kinetics of liquid rise within the pore spaces. Although porous media generally have a complex structure, they can be modeled as a single, vertical capillary or as an assembly of such capillaries. The main difficulties lie in separately estimating the effective mean radius of the capillaries and the contact angle between the liquid and the pore....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 99 5 شماره
صفحات -
تاریخ انتشار 2007