Online Learning of Approximate Dependency Parsing Algorithms
نویسندگان
چکیده
In this paper we extend the maximum spanning tree (MST) dependency parsing framework of McDonald et al. (2005c) to incorporate higher-order feature representations and allow dependency structures with multiple parents per word. We show that those extensions can make the MST framework computationally intractable, but that the intractability can be circumvented with new approximate parsing algorithms. We conclude with experiments showing that discriminative online learning using those approximate algorithms achieves the best reported parsing accuracy for Czech and Danish.
منابع مشابه
Dependency Parsing
A dependency parser analyzes syntactic structure by identifying dependency relations between words. In this lecture, I will introduce dependency-based syntactic representations (§1), arcfactored models for dependency parsing (§2), and online learning algorithms for such models (§3). I will then discuss two important parsing algorithms for these models: Eisner’s algorithm for projective dependen...
متن کاملLogistic Online Learning Methods and Their Application to Incremental Dependency Parsing
We investigate a family of update methods for online machine learning algorithms for cost-sensitive multiclass and structured classification problems. The update rules are based on multinomial logistic models. The most interesting question for such an approach is how to integrate the cost function into the learning paradigm. We propose a number of solutions to this problem. To demonstrate the a...
متن کاملA Multilingual Dependency Analysis System Using Online Passive-Aggressive Learning
This paper presents an online algorithm for dependency parsing problems. We propose an adaptation of the passive and aggressive online learning algorithm to the dependency parsing domain. We evaluate the proposed algorithms on the 2007 CONLL Shared Task, and report errors analysis. Experimental results show that the system score is better than the average score among the participating systems.
متن کاملEnsemble Models for Dependency Parsing: Cheap and Good?
Previous work on dependency parsing used various kinds of combination models but a systematic analysis and comparison of these approaches is lacking. In this paper we implemented such a study for English dependency parsing and find several non-obvious facts: (a) the diversity of base parsers is more important than complex models for learning (e.g., stacking, supervised meta-classification), (b)...
متن کاملIRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Confidence Estimation in Structured Prediction
Structured classification tasks such as sequence labeling and dependency parsing have seen much interest by the Natural Language Processing and the machine learning communities. Several online learning algorithms were adapted for structured tasks such as Perceptron, PassiveAggressive and the recently introduced Confidence-Weighted learning . These online algorithms are easy to implement, fast t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006