Complex Hessian Equations on Some Compact Kähler Manifolds

نویسنده

  • Asma Jbilou
چکیده

On a compact connected 2m-dimensional Kähler manifold with Kähler form ω, given a smooth function f : M → R and an integer 1 < k < m, we want to solve uniquely in ω the equation ω̃ ∧ωm−k eω, relying on the notion of k-positivity for ω̃ ∈ ω the extreme cases are solved: k m by Yau in 1978 , and k 1 trivially . We solve by the continuity method the corresponding complex elliptic kthHessian equation, more difficult to solve than the Calabi-Yau equation k m , under the assumption that the holomorphic bisectional curvature of the manifold is nonnegative, required here only to derive an a priori eigenvalues pinching.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

Heterotic supersymmetric backgrounds with compact holonomy revisited

We simplify the classification of supersymmetric solutions with compact holonomy of the Killing spinor equations of heterotic supergravity using the field equations and the additional assumption that the 3-form flux is closed. We determine all the fractions of supersymmetry that the solutions preserve and find that there is a restriction on the number of supersymmetries which depends on the iso...

متن کامل

Complex Monge-ampère Equations on Hermitian Manifolds

We study complex Monge-Ampère equations in Hermitian manifolds, both for the Dirichlet problem and in the case of compact manifolds without boundary. Our main results extend classical theorems of Yau [43] and Aubin [1] in the Kähler case, and those of Caffarelli, Kohn, Nirenberg and Spruck [9] for the Dirichlet problem in C n . As an application we study the problem of finding geodesics in the ...

متن کامل

Complex Monge–Ampère equations and totally real submanifolds

We study the Dirichlet problem for complex Monge–Ampère equations in Hermitian manifolds with general (non-pseudoconvex) boundary. Our main result (Theorem 1.1) extends the classical theorem of Caffarelli, Kohn, Nirenberg and Spruck in Cn. We also consider the equation on compact manifolds without boundary, attempting to generalize Yau’s theorems in the Kähler case. As applications of the main ...

متن کامل

Applications of the Seiberg-Witten equations to the Differential Geometry of non-compact Kähler manifolds

of the Dissertation Applications of the Seiberg-Witten equations to the Differential Geometry of non-compact Kähler manifolds by Ilya Elson Doctor of Philosophy in Mathematics Stony Brook University 2014 Soon after the introduction of the Seiberg-Witten equations, and their magnificent application to the differential topology of 4manifolds, LeBrun [LeB95a] used these equations to study differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012