MODELING AND CONTROL OF THE COORDINATED MOTION OF A GROUP OF AUTONOMOUS MOBILE ROBOTS by NUSRETTIN GULEC

نویسنده

  • Nusrettin Gulec
چکیده

The coordinated motion of a group of autonomous mobile robots for the achievement of a coordinated task has received significant research interest in the last decade. Avoiding the collisions of the robots with the obstacles and other members of the group is one of the main problems in the area as previous studies have revealed. Substantial amount of research effort has been concentrated on defining virtual forces that will yield reference trajectories for a group of autonomous mobile robots engaged in coordinated behavior. If the mobile robots are nonholonomic, this approach fails to guarantee coordinated motion since the nonholonomic constraint blocks sideway motions. Two novel approaches to the problem of modeling coordinated motion of a group of autonomous nonholonomic mobile robots inclusive of a new collision avoidance scheme are developed in this thesis. In the first approach, a novel coordination method for a group of autonomous nonholonomic mobile robots is developed by the introduction of a virtual reference system, which in turn implies online collision-free trajectories and consists of virtual mass-spring-damper units. In the latter, online generation of reference trajectories for the robots is enabled in terms of their linear and angular velocities. Moreover, a novel collision avoidance algorithm, that updates the velocities of the robots when a collision is predicted, is developed in both of the proposed models. Along with the presentation of several coordinated task examples, the proposed models are verified via simulations. Experiments were conducted to verify the performance of the collision avoidance algorithm. BIR GRUP OTONOM MOBIL ROBOTUN KOORDINELI HAREKETININ MODELLENMESI VE KONTROLU

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Modeling and Construction of a New Two-Wheeled Mobile Manipulator: Self-balancing and Climbing

Designing the self-balancing two-wheeled mobile robots and reducing undesired vibrations are of great importance. For this purpose, the majority of researches are focused on application of relatively complex control approaches without improving the robot structure. Therefore, in this paper we introduce a new two-wheeled mobile robot which, despite its relative simple structure, fulfills the req...

متن کامل

Dynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach

This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Development of Petri-net Communication Model for Cooperative Mobile Robots System

Petri net model of the communication level of a cooperative autonomous mobile robots system (CAMRS) is presented. The purpose of this model is to specify the integration of the individual efforts on path planning, motion control, and vision system that are necessary for the autonomous operation of the mobile robots. This is achieved by analytically modeling the various units of the system as Pe...

متن کامل

Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion

Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005