Local Binary Patterns for Printer Identification based on Texture Analysis
نویسندگان
چکیده
This paper proposes a texture analysis of the printed document based on Local Binary Pattern (LBP) descriptor for the application of printer identification. The LBP provides a statistical description of the pixels’ gray level differences within their neighborhoods. The occurrence histogram of local binary patterns is able to capture the document’s texture modifications by the distortion during the printing-and-scanning process, such as halftoning, geometric distortion, and mechanical defects. The most frequently appeared local binary patterns represent bright or dark flat regions. Furthermore, Gou et al. proposed an approach based on the combination of three different types of statistical features for scanner identification. We deconstruct their approach in order to evaluate the effectiveness of each type of features for printer identification. Our proposed LBP descriptor based model provides an excellent identification rate at approximately 99.4%, with a low variance. These results were achieved by Support Vector Machine (SVM) classification via n-fold cross validation and leave one out. They exceed any of the results obtained using the features, employed by the Gou et al. approach either singularly or in combination. Our experiments were conducted on 350 printed images, as well as 350 printed text documents, by a set of similar printers, two of which were exactly identical. The proposed model remains robust against common image processing, including averaging filtering, median filtering, sharpening, rotation, resizing, and JPEG compression.
منابع مشابه
Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis
Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملOriented Local Binary Patterns for Writer Identification
In this paper we present an oriented texture feature set and apply it to the problem of offline writer identification. Our feature set is based on local binary patterns (LBP) which were broadly used for face recognition in the past. These features are inherently texture features. Thus, we approach the writer identification problem as an oriented texture recognition task and obtain remarkable re...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملVisual Recognition Using Local Quantized Patterns
Features such as Local Binary Patterns (LBP) and Local Ternary Patterns (LTP) have been very successful in a number of areas including texture analysis, face recognition and object detection. They are based on the idea that small patterns of qualitative local gray-level differences contain a great deal of information about higher-level image content. Existing local pattern features use hand-spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011