Speech/Music Classification using SVM
نویسندگان
چکیده
Audio classification serves as the fundamental step towards the rapid growth in audio data volume. Automatic audio classification is very useful in audio indexing; content based audio retrieval and online audio distribution. The accuracy of the classification relies on the strength of the features and classification scheme. In this work both, time domain and frequency domain features are extracted from the input signal. Time domain features are Zero Crossing Rate (ZCR) and Short Time Energy (STE). Frequency domain features are spectral centroid, spectral flux, spectral entropy and spectral roll-off. After feature extraction, classification is carried out, using SVM model. The proposed feature extraction and classification models results in better accuracy in speech/music classification.
منابع مشابه
Discriminative Weight Training for Support Vector Machine-Based Speech/Music Classification in 3GPP2 SMV Codec
In this study, a discriminative weight training is applied to a support vector machine (SVM) based speech/music classification for a 3GPP2 selectable mode vocoder (SMV). In the proposed approach, the speech/music decision rule is derived by the SVM by incorporating optimally weighted features derived from the SMV based on a minimum classification error (MCE) method. This method differs from tha...
متن کاملشناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملAudio Classification Based on Sparse Coefficients
Audio signal classification is usually done using conventional signal features such as mel-frequency cepstrum coefficients (MFCC), line spectral frequencies (LSF), and short time energy (STM). Learned dictionaries have been shown to have promising capability for creating sparse representation of a signal and hence have a potential to be used for the extraction of signal features. In this paper,...
متن کاملSpeech/Music Classification using wavelet based Feature Extraction Techniques
Audio classification serves as the fundamental step towards the rapid growth in audio data volume. Due to the increasing size of the multimedia sources speech and music classification is one of the most important issues for multimedia information retrieval. In this work a speech/music discrimination system is developed which utilizes the Discrete Wavelet Transform (DWT) as the acoustic feature....
متن کاملSpeech/Music Classification using SVM and GMM
Today, digital audio applications are part of our everyday lives. Automatic audio classification is very useful in audio indexing; content based audio retrieval and online audio distribution. The accuracy of the classification relies on the strength of the features and classification scheme. In this work both, time domain and frequency domain features are extracted from the input signal. Time d...
متن کاملSpeaker Recognition Using DWT- MFCC with Multi-SVM Classifier
This paper describes a hybrid technique for speaker recognition. Speaker recognition is that the method of identifying the person based on characteristics like pitch, tone, Cepstral coefficients in the speech wave. Here DWT and MFCC technique is employed for feature extraction. A mix of two or lot of techniques is named hybrid technique. DWT means divide the speech signal completely into differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013