CodeSLAM - Learning a Compact, Optimisable Representation for Dense Visual SLAM

نویسندگان

  • Michael Bloesch
  • Jan Czarnowski
  • Ronald Clark
  • Stefan Leutenegger
  • Andrew J. Davison
چکیده

The representation of geometry in real-time 3D perception systems continues to be a critical research issue. Dense maps capture complete surface shape and can be augmented with semantic labels, but their high dimensionality makes them computationally costly to store and process, and unsuitable for rigorous probabilistic inference. Sparse feature-based representations avoid these problems, but capture only partial scene information and are mainly useful for localisation only. We present a new compact but dense representation of scene geometry which is conditioned on the intensity data from a single image and generated from a code consisting of a small number of parameters. We are inspired by work both on learned depth from images, and auto-encoders. Our approach is suitable for use in a keyframe-based monocular dense SLAM system: While each keyframe with a code can produce a depth map, the code can be optimised efficiently jointly with pose variables and together with the codes of overlapping keyframes to attain global consistency. Conditioning the depth map on the image allows the code to only represent aspects of the local geometry which cannot directly be predicted from the image. We explain how to learn our code representation, and demonstrate its advantageous properties in monocular SLAM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Deeply Supervised Visual Descriptors for Dense Monocular Reconstruction

Visual SLAM (Simultaneous Localization and Mapping) methods typically rely on handcrafted visual features or raw RGB values for establishing correspondences between images. These features, while suitable for sparse mapping, often lead to ambiguous matches at texture-less regions when performing dense reconstruction due to the aperture problem. In this work, we explore the use of learned feature...

متن کامل

The Effect of Visual Representation, Textual Representation, and Glossing on Second Language Vocabulary Learning

In this study, the researcher chose three different vocabulary techniques (Visual Representation, Textual Enhancement, and Glossing) and compared them with traditional method of teaching vocabulary. 80 advanced EFL Learners were assigned as four intact groups (three experimental and one control group) through using a proficiency test and a vocabulary test as a pre-test. In the visual group, stu...

متن کامل

Learning monocular visual odometry with dense 3D mapping from dense 3D flow

This paper introduces a fully deep learning approach to monocular SLAM, which can perform simultaneous localization using a neural network for learning visual odometry (L-VO) and dense 3D mapping. Dense 2D flow and a depth image are generated from monocular images by sub-networks, which are then used by a 3D flow associated layer in the L-VO network to generate dense 3D flow. Given this 3D flow...

متن کامل

MARTINEZ, CALWAY: EFFICIENTLY INCREASING MAP DENSITY IN VISUAL SLAM 1 Efficiently Increasing Map Density in Visual SLAM Using Planar Features with Adaptive Measurements

Point based visual SLAM suffers from a trade off between map density and computational efficiency. With too few mapped points, tracking range is restricted and resistance to occlusion is reduced, whilst expanding the map to give dense representation significantly increases computation. We address this by introducing higher order structure into the map using planar features. The parameterisation...

متن کامل

Robust Visual Tracking Based on an Effective Appearance Model

Most existing appearance models for visual tracking usually construct a pixel-based representation of object appearance so that they are incapable of fully capturing both global and local spatial layout information of object appearance. In order to address this problem, we propose a novel spatial LogEuclidean appearance model (referred as SLAM) under the recently introduced Log-Euclidean Rieman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018