Handling of Fuzzy Queries using Relational DBMS

نویسندگان

  • Nishant Agrawal
  • Anubhav Manan
  • Akash Aggarwal
  • Rashmi Sharma
چکیده

Handling crisp and precise data in SQL is an easy process but classical data models often suffer from their incapability of representing and manipulating imprecise and uncertain information which is found in many real world applications. Since the early 1980’s, Zadeh’sfuzzy logic has been used to improve and modify various data models. This introduction of fuzzy logic in databases enhances the capability of classical models so that uncertain and imprecise information could easily be represented and manipulated.This paper proposes an algorithm with the help of which crisp values are converted into fuzzy values by calculating their membership value at the database level. The paper then uses a GUI through which the result of fuzzy queries can be obtained from the database. With the help of proposed algorithm, the calculated membership value will be stored in the database for differentpredefined categories (e.g.-child, young, middle age and old in case of ages). These membership values helps in fetching the result of fuzzy queries from the database with the help of developed GUI (the database used here is oracle 10g but other databases can also be used).The fuzzy queries have a wider retrieved space and can be used to identify the characteristic of an individual (marks in this case).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML

As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...

متن کامل

Apply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML

As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...

متن کامل

Fuzzy to SQL Conversion using Gefred Model with the help of MATLAB

For Many Years, achieving unambiguous knowledge has been turned to a serious challenge for human being. The aim of this paper is to emphasize situation when classical {true, false} logic is not adequate for data selection and data classification. Linguistic expression like: high salary, young etc are very often used in life and in statistics. The goal of this paper is brief study of fuzzy logic...

متن کامل

Fuzzy to SQL Conversion using Gefred Model with the help of MATLAB

For Many Years, achieving unambiguous knowledge has been turned to a serious challenge for human being. The aim of this paper is to emphasize situation when classical {true, false} logic is not adequate for data selection and data classification. Linguistic expression like: high salary, young etc are very often used in life and in statistics. The goal of this paper is brief study of fuzzy logic...

متن کامل

SQL Backing in Databases to Support Search on the Web

The search as you type system computes answers on the fly as the user type in the keyword query character by character. We study in the support search as you type on the data residing in relational DBMS. We fully focus on how to the support this type of search using native database language. The main scope is how to force existing database functionalities to meet the high performance requiremen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013