High-order discretization schemes for biochemical applications of boundary element solvation and variational electrostatic projection methods.

نویسندگان

  • Brent A Gregersen
  • Darrin M York
چکیده

A series of high-order surface element discretization schemes for variational boundary element methods are introduced. The surface elements are chosen in accord with angular quadrature rules for integration of spherical harmonics. Surface element interactions are modeled by Coulomb integrals between spherical Gaussian functions with exponents chosen to reproduce the exact variational energy and Gauss's law for a point charge in a spherical cavity. The present work allows high-order surface element expansions to be made for variational methods such as the conductorlike screening model for solvation and the variational electrostatic projection method for generalized solvent boundary potentials in molecular simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A charge-scaling implementation of the variational electrostatic projection method

Two new charge-scaling methods for efficient modeling of the solvated macromolecular environment in hybrid QM/MM calculations of biological reactions are presented. The methods are extensions of the variational electrostatic projection (VEP) method, and allows a subset of atomic charges in the external environment to be adjusted to mimic, in the active dynamical region, the electrostatic potent...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Fourth Order Formulation of DDM for Crack Analysis in Brittle Solids

A fourth order formulation of the displacement discontinuity method (DDM) is proposed for the crack analysis of brittle solids such as rocks, glasses, concretes and ceramics. A fourth order boundary collocation scheme is used for the discretization of each boundary element (the source element). In this approach, the source boundary element is divided into five sub-elements each recognized by a ...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Numerical solution of boundary-integral equations for molecular electrostatics.

Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 19  شماره 

صفحات  -

تاریخ انتشار 2005