Learning algorithms and probability distributions in feed-forward and feed-back networks.
نویسنده
چکیده
Learning algorithms have been used both on feed-forward deterministic networks and on feed-back statistical networks to capture input-output relations and do pattern classification. These learning algorithms are examined for a class of problems characterized by noisy or statistical data, in which the networks learn the relation between input data and probability distributions of answers. In simple but nontrivial networks the two learning rules are closely related. Under some circumstances the learning problem for the statistical networks can be solved without Monte Carlo procedures. The usual arbitrary learning goals of feed-forward networks can be given useful probabilistic meaning.
منابع مشابه
On the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملUtilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...
متن کاملBack-Propagation as Reinforcement in Prediction Tasks
The back-propagation (BP) training scheme is widely used for training network models in cognitive science besides its well known technical and biological short-comings. In this paper we contribute to making the BP training scheme more acceptable from a biological point of view in cognitively motivated prediction tasks overcoming one of its major drawbacks. Traditionally, recurrent neural networ...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 84 23 شماره
صفحات -
تاریخ انتشار 1987