Semantic Tag Extraction from WordNet Glosses

نویسندگان

  • Alina Andreevskaia
  • Sabine Bergler
چکیده

We propose a method that uses information from WordNet glosses to assign semantic tags to individual word meanings, rather than to entire words. The produced lists of annotated words will be used in sentiment annotation of texts and phrases and in other NLP tasks. The method was implemented in the Semantic Tag Extraction Program (STEP) and evaluated on the category of sentiment (positive, negative or neutral) using two human-annotated lists. The lists were first compared to each other and then used to assess the accuracy of the proposed system. We argue that significant disagreement on sentiment tags between the two human-annotated lists reflects a naturally occurring ambiguity of words located on the periphery of the category of sentiment. The category of sentiment, thus, is believed to be structured as a fuzzy set. Finally, we evaluate the generalizability of STEP to other semantic categories on the example of the category of words denoting increase/decrease in magnitude, intensity or quality of some state or process. The implications of this study for both semantic tagging system development and for performance evaluation practices are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Annotating Words Using WordNet Semantic Glosses

An approach to the word sense disambiguation (WSD) relaying on the WordNet synsets is proposed. The method uses semantically tagged glosses to perform a process similar to the spreading activation in semantic network, creating ranking of the most probable meanings for word annotation. Preliminary evaluation shows quite promising results. Comparison with the state-of-theart WSD methods indicates...

متن کامل

Mining WordNet for a Fuzzy Sentiment: Sentiment Tag Extraction from WordNet Glosses

Many of the tasks required for semantic tagging of phrases and texts rely on a list of words annotated with some semantic features. We present a method for extracting sentiment-bearing adjectives from WordNet using the Sentiment Tag Extraction Program (STEP). We did 58 STEP runs on unique non-intersecting seed lists drawn from manually annotated list of positive and negative adjectives and eval...

متن کامل

Multilingual eXtended WordNet Knowledge Base: Semantic Parsing and Translation of Glosses

This paper presents a method to create WordNet-like lexical resources for different languages. Instead of directly translating glosses from one language to another, we perform first semantic parsing of WordNet glosses and then translate the resulting semantic representation. The proposed approach simplifies the machine translation of the glosses. The approach provides ready to use semantic repr...

متن کامل

Word sense disambiguation of WordNet glosses

This paper presents a suite of methods and results for the semantic disambiguation of WordNet glosses. WordNet is a resource widely used in natural language processing and artificial intelligence. Intended and designed as a lexical database, WordNet exhibits some deficiencies when used as a knowledge base. By semantically disambiguating the words in the glosses, we add pointers from each word t...

متن کامل

Supersense Tagging of Unknown Nouns Using Semantic Similarity

The limited coverage of lexical-semantic resources is a significant problem for NLP systems which can be alleviated by automatically classifying the unknown words. Supersense tagging assigns unknown nouns one of 26 broad semantic categories used by lexicographers to organise their manual insertion into WORDNET. Ciaramita and Johnson (2003) present a tagger which uses synonym set glosses as anno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006