Bidirectional Changes in Spatial Dendritic Integration Accompanying Long-Term Synaptic Modifications

نویسندگان

  • Zhiru Wang
  • Ning-long Xu
  • Chien-ping Wu
  • Shumin Duan
  • Mu-ming Poo
چکیده

Information processing in the neuron requires spatial summation of synaptic inputs at the dendrite. In CA1 pyramidal neurons of the hippocampus, a brief period of correlated pre- and postsynaptic activity, which induces long-term potentiation (LTP) or long-term depression (LTD), results in a persistent increase or decrease in the linearity of spatial summation, respectively. Such bidirectional modification of the summation property is specific to the modified input and reflects localized dendritic changes involving I(h) channels and NMDA receptors. Thus, correlated pre- and postsynaptic activity alters not only the strength of the activated input but also its dendritic integration with other inputs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long Lasting Protein Synthesis- and Activity-Dependent Spine Shrinkage and Elimination after Synaptic Depression

Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that sp...

متن کامل

Young Investigators Colloquium 1

Most neurons in the mammalian brain receive thousands of excitatory synaptic inputs that are widely distributed along the dendritic arbor and activated with varying degrees of synchrony. Summation of unitary synaptic excitatory postsynaptic potentials (EPSPs) at the dendrite is crucial for initiation of the action potential. Patterned neuronal activity, which is known to modify synaptic transmi...

متن کامل

Bidirectional Parallel Fiber Plasticity in the Cerebellum under Climbing Fiber Control

Cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses can undergo postsynaptically expressed long-term depression (LTD) or long-term potentiation (LTP) depending on whether or not the climbing fiber (CF) input is coactivated during tetanization. Here, we show that modifications of the postsynaptic calcium load using the calcium chelator BAPTA or photolytic calcium uncaging result in a reve...

متن کامل

Morphological changes associated with long-term potentiation.

Long-term potentiation (LTP) is a long-lasting form of synaptic plasticity induced by brief repetitive afferent stimulation that is thought to be associated with learning and memory. It is most commonly studied in the hippocampus where it may last for several weeks, and involves the synthesis of new proteins that might play a structural role. In this review we summarize the evidence in favor of...

متن کامل

Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus

Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2003