Neuroprotective effects of mild hypoxia in organotypic hippocampal slice cultures
نویسندگان
چکیده
PURPOSE The aim of this study was to investigate the potential effects of mild hypoxia in the mature and immature brain. METHODS We prepared organotypic slice cultures of the hippocampus and used hippocampal tissue cultures at 7 and 14 days in vitro (DIV) to represent the immature and mature brain, respectively. Tissue cultures were exposed to 10% oxygen for 60 minutes. Twenty-four hours after this hypoxic insult, propidium iodide fluorescence images were obtained, and the damaged areas in the cornu ammonis 1 (CA1), CA3, and dentate gyrus (DG) were measured using image analysis. RESULTS In the 7-DIV group compared to control tissue, hypoxia-exposed tissue showed decreased damage in two regions (CA1: 5.59%±2.99% vs. 4.80%±1.37%, P=0.900; DG: 33.88%±12.53% vs. 15.98%±2.37%, P=0.166), but this decrease was not statistically significant. In the 14-DIV group, hypoxia-exposed tissue showed decreased damage compared to control tissues; this decrease was not significant in the CA3 (24.51%±6.05% vs. 18.31%±3.28%, P=0.373) or DG (15.72%±3.47% vs. 9.91%±2.11%, P=0.134), but was significant in the CA1 (50.91%±5.90% vs. 32.30%±3.34%, P=0.004). CONCLUSION Although only CA1 tissues cultured for 14 DIV showed significantly less damage after exposure to hypoxia, the other tissues examined in this study showed a tendency towards less damage after hypoxic exposure. Therefore, mild hypoxia might play a protective role in the brain.
منابع مشابه
Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures.
In addition to its well-known hematopoietic effects, erythropoietin (EPO) also has neuroprotective properties. However, hematopoietic side effects are unwanted for neuroprotection, underlining the need for EPO-like compounds with selective neuroprotective actions. One such compound, devoid of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). Fo...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملNeuroprotective Effect of D-Fructose-1,6-Bisphosphate against β-Amyloid Induced Neurotoxicity in Rat Hippocampal Organotypic Slice Culture: Involvement of PLC and MEK/ERK Signaling Pathways
D-fructose-1,6-bisphosphate (FBP) is an endogenous intermediate of glycolytic pathway which has potent neuroprotective effect against various neurotoxic insults. This study examined whether FBP could antagonize the neurotoxicity induced by amyloid β-peptide (Aβ) in rat hippocampal organotypic slice cultures, and the possible mechanism was also explored. Treatment with FBP (concentration ranges ...
متن کاملNeuroprotective Effects of α-Tocotrienol on Kainic Acid-Induced Neurotoxicity in Organotypic Hippocampal Slice Cultures
Vitamin E, such as alpha-tocopherol (ATPH) and alpha-tocotrienol (ATTN), is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC) and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM) treatm...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 58 شماره
صفحات -
تاریخ انتشار 2015