On finite products of convolutions and classifications of hyperbolic and elliptic equations
نویسندگان
چکیده
Abstract. In this paper we consider the linear second order partial differential equation with non-constant coefficients; then by using the double convolution product we produce new equations with polynomials coefficients and we classify the new equations. It is shown that the classifications of hyperbolic and elliptic new equations are similar to the original equations that is the classification is invariant after finite double convolutions product.
منابع مشابه
Analytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملBuckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
متن کاملClassifications of Linear Operators Preserving Elliptic, Positive and Non-negative Polynomials
We characterize all linear operators on finite or infinite-dimensional spaces of univariate real polynomials preserving the sets of elliptic, positive, and non-negative polynomials, respectively. This is done by means of FischerFock dualities, Hankel forms, and convolutions with non-negative measures. We also establish higher-dimensional analogs of these results. In particular, our classificati...
متن کاملInvestigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical and Computer Modelling
دوره 54 شماره
صفحات -
تاریخ انتشار 2011