Denoising a Point Cloud for Surface Reconstruction
نویسندگان
چکیده
Surface reconstruction from an unorganized point cloud is an important problem due to its widespread applications. White noise, possibly clustered outliers, and noisy perturbation may be generated when a point cloud is sampled from a surface. Most existing methods handle limited amount of noise. We develop a method to denoise a point cloud so that the users can run their surface reconstruction codes or perform other analyses afterwards. Our experiments demonstrate that our method is computationally efficient and it has significantly better noise handling ability than several existing surface reconstruction codes.
منابع مشابه
Point Cloud Non Local Denoising Using Local Surface Descriptor Similarity
This article addresses the problem of denoising 3D data from LIDAR. It is a step often required to allow a good reconstruction of surfaces represented by point clouds. In this paper, we present an original algorithm inspired by a recent method developed by (Buades and Morel, 2005) in the field of image processing, the Non Local Denoising (NLD). With a local geometric descriptor, we look for poi...
متن کاملMesh reconstruction by meshless denoising and parameterization
We present a new approach to simultaneously denoise and parameterize unorganized point cloud data. This is achieved by minimizing an appropriate energy function defined on the point cloud and its parameterization. An iterative algorithm to minimize the energy is described. The key ingredient of our approach is an “as-rigid-as-possible” meshless parameterization to map a point cloud with disk to...
متن کاملDensity-based Denoising of Point Cloud
Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this deficiency, a density-based point cloud denoising method is presented to remove outliers and noisy points. First, particle-swam optimization technique is employed for automatically approximating optimal bandwidth of multivariate kernel density estimation to ensure the robust perf...
متن کاملPatch-Collaborative Spectral Point-Cloud Denoising
We present a new framework for point cloud denoising by patch-collaborative spectral analysis. A collaborative generalization of each surface patch is defined, combining similar patches from the denoised surface. The Laplace–Beltrami operator of the collaborative patch is then used to selectively smooth the surface in a robust manner that can gracefully handle high levels of noise, yet preserve...
متن کاملLow Rank Matrix Approximation for Geometry Filtering
Wepropose a robust, anisotropic normal estimationmethod for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local feature descriptor for each point and find similar, non-local neighbors that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1704.04038 شماره
صفحات -
تاریخ انتشار 2017