Specialising Word Vectors for Lexical Entailment

نویسندگان

  • Ivan Vulic
  • Nikola Mrksic
چکیده

We present LEAR (Lexical Entailment Attract-Repel), a novel post-processing method that transforms any input word vector space to emphasise the asymmetric relation of lexical entailment (LE), also known as the IS-A or hyponymy-hypernymy relation. By injecting external linguistic constraints (e.g., WordNet links) into the initial vector space, the LE specialisation procedure brings true hyponymy-hypernymy pairs closer together in the transformed Euclidean space. The proposed asymmetric distance measure adjusts the norms of word vectors to reflect the actual WordNet-style hierarchy of concepts. Simultaneously, a joint objective enforces semantic similarity using the symmetric cosine distance, yielding a vector space specialised for both lexical relations at once. LEAR specialisation achieves state-of-the-art performance in the tasks of hypernymy directionality, hypernymy detection and graded lexical entailment, demonstrating the effectiveness and robustness of the proposed model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Context-Enriched Neural Network Method for Recognizing Lexical Entailment

Recognizing lexical entailment (RLE) always plays an important role in inference of natural language, i.e., identifying whether one word entails another, for example, fox entails animal. In the literature, automatically recognizing lexical entailment for word pairs deeply relies on words’ contextual representations. However, as a “prototype” vector, a single representation cannot reveal multifa...

متن کامل

Learning Word Embeddings for Hyponymy with Entailment-Based Distributional Semantics

Lexical entailment, such as hyponymy, is a fundamental issue in the semantics of natural language. This paper proposes distributional semantic models which efficiently learn word embeddings for entailment, using a recently-proposed framework for modelling entailment in a vectorspace. These models postulate a latent vector for a pseudo-phrase containing two neighbouring word vectors. We investig...

متن کامل

Relations such as Hypernymy: Identifying and Exploiting Hearst Patterns in Distributional Vectors for Lexical Entailment

We consider the task of predicting lexical entailment using distributional vectors. We perform a novel qualitative analysis of one existing model which was previously shown to only measure the prototypicality of word pairs. We find that the model strongly learns to identify hypernyms using Hearst patterns, which are well known to be predictive of lexical relations. We present a novel model whic...

متن کامل

Experiments with three approaches to recognizing lexical entailment

Inference in natural language often involves recognizing lexical entailment (RLE); that is, identifying whether one word entails another. For example, buy entails own. Two general strategies for RLE have been proposed: One strategy is to manually construct an asymmetric similarity measure for context vectors (directional similarity) and another is to treat RLE as a problem of learning to recogn...

متن کامل

Tiered Clustering to Improve Lexical Entailment

Many tasks in Natural Language Processing involve recognizing lexical entailment. Two different approaches to this problem have been proposed recently that are quite different from each other. The first is an asymmetric similarity measure designed to give high scores when the contexts of the narrower term in the entailment are a subset of those of the broader term. The second is a supervised ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.06371  شماره 

صفحات  -

تاریخ انتشار 2017