Mode-dependent nonequilibrium temperature in aging systems.
نویسندگان
چکیده
We introduce an exactly solvable model for glassy dynamics with many relaxational modes, each one characterized by a different relaxational time scale. Analytical solution of the aging dynamics at low temperatures shows that a nonequilibrium or effective temperature can be associated to each time scale or mode. The spectrum of effective temperatures shows two regions that are separated by an age-dependent boundary threshold. Region I is characterized by partially equilibrated modes that relax faster than the modes at the threshold boundary. Thermal fluctuations and time correlations for modes in region I show that those modes are in mutual thermal equilibrium at a unique age-dependent effective temperature theta(s). In contrast, modes with relaxational time scales longer than that of modes at the threshold (region II) show diffusive properties and do not share the common temperature theta(s). The shift of the threshold toward lower energy modes as the system ages, and the progressive shrinking of region II, determines how the full spectrum of modes equilibrates. As is usually done in experiments, we have defined a frequency-dependent effective temperature and we have found that all modes in region I are mutually equilibrated at the temperature theta(s) independently of the probing frequency. The present model aims to explain transport anomalies observed in supercooled liquids in terms of a collection of structurally disordered and cooperative rearranging mesoscopic regions.
منابع مشابه
Nonequilibrium Dynamics and Aging in the Three–Dimensional Ising Spin Glass Model
The low temperature dynamics of the three dimensional Ising spin glass in zero field with a discrete bond distribution is investigated via MC simulations. The thermoremanent magnetization is found to decay algebraically and the temperature dependent exponents agree very well with the experimentally determined values. The nonequilibrium autocorrelation function C(t, tw) shows a crossover at the ...
متن کاملSupercooled liquids under shear: A mode-coupling theory approach
We generalize the mode-coupling theory of supercooled fluids to systems under stationary shear flow. Our starting point is the generalized fluctuating hydrodynamic equations with a convection term. The method is applied to a two dimensional colloidal suspension. The shear rate dependence of the intermediate scattering function and shear viscosity is analyzed. The results show a drastic reductio...
متن کاملRelaxation of Internal Temperature and Volume Viscosity
We investigate the relaxation of internal temperature and the concept of volume viscosity in nonequilibrium gas models derived from the kinetic theory. We first investigate a nonequilibrium gas model with two temperatures—translational and internal—where the volume viscosity is absent. We establish that, in a relaxation regime, the temperature difference becomes proportional to the divergence o...
متن کامل1 2 Se p 20 01 Nonequilibrium critical dynamics of ferromagnetic spin systems
We use simple models (the Ising model in one and two dimensions, and the spherical model in arbitrary dimension) to put to the test some recent ideas on the slow dynamics of nonequilibrium systems. In this review the focus is on the temporal evolution of two-time quantities and on the violation of the fluctuation-dissipation theorem, with special emphasis given to nonequilibrium critical dynami...
متن کاملModeling of Rotational Nonequilibrium in Post-Normal Shock Flow Analyses
Recent modeling of thermal nonequilibrium processes in simple molecules like hydrogen and nitrogen has indicated that rotational nonequilibrium becomes as important as vibrational nonequilibrium at high temperature. In this study, to analyze rotational nonequilibrium, the rotational mode is separated from the translational-rotational mode that is usually considered in two-temperature models. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 72 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2005