Mirror symmetry => 2-view stereo geometry
نویسندگان
چکیده
We address the problem of 3-D reconstruction from a single perspective view of a mirror symmetric scene. We establish the fundamental result that it is geometrically equivalent to observing the scene with two cameras, the cameras being symmetrical with respect to the unknown 3-D symmetry plane. All traditional tools of classical 2-view stereo can then be applied, and the concepts of fundamental/essential matrix, epipolar geometry, rectification and disparity hold. However, the problems are greatly simplified here, as the rectification process and the computation of epipolar geometry can be easily performed from the original view only. If the camera is calibrated, we show how to synthesize the symmetric image generated by the same physical camera. An Euclidean reconstruction of the scene can then be computed from the resulting stereo pair. To validate this novel formulation, we have processed many real images, and show examples of 3-D reconstruction.
منابع مشابه
Reconstructing Mirror Symmetric Scenes From a Single View Using 2-View Stereo Geometry
We address the problem of 3-D reconstruction from a single perspective view of a mirror symmetric scene. We establish the fundamental result that it is geometrically equivalent to observing the scene with two cameras, the cameras being symmetrical with respect to the unknown 3-D symmetry plane. All traditional tools of classical 2-view stereo can then be applied, and the concepts of fundamen-ta...
متن کاملFigure-Ground Organization using 3D Symmetry
We present a novel approach to object localization using mirror symmetry as a general purpose and biologically motivated prior. 3D symmetry leads to good segmentation because (i) almost all objects exhibit symmetry, and (ii) configurations of objects are not likely to be symmetric unless they share some additional relationship. Furthermore, psychophysical evidence suggests that the human vision...
متن کاملLocal Mirror Symmetry: Calculations and Interpretations
We describe local mirror symmetry from a mathematical point of view and make several A-model calculations using the mirror principle (localization). Our results agree with B-model computations from solutions of Picard-Fuchs differential equations constructed form the local geometry near a Fano surface within a Calabi-Yau manifold. We interpret the Gromov-Witten-type numbers from an enumerative ...
متن کاملLectures on Mirror Symmetry , Derived Categories , and D - Branes Anton Kapustin And
This paper is an introduction to Homological Mirror Symmetry, derived categories , and topological D-branes aimed mainly at a mathematical audience. In the paper we explain the physicists' viewpoint of the Mirror Phenomenon, its relation to derived categories , and the reason why it is necessary to enlarge the Fukaya category with coisotropic A-branes; we discuss how to extend the definition of...
متن کاملMirror Symmetry for P and Tropical Geometry
In [13, 14, 15, 16], Bernd Siebert and myself have been working on a program designed to understand mirror symmetry via an algebro-geometric analogue to the Strominger-YauZaslow program [29]. The basic idea is that the controlling objects in mirror symmetry are integral affine manifolds with singularities. One can view an integral affine manifold as producing a mirror pair of manifolds, one a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Image Vision Comput.
دوره 21 شماره
صفحات -
تاریخ انتشار 2003