Direct Interaction of Endogenous Kv Channels with Syntaxin Enhances Exocytosis by Neuroendocrine Cells

نویسندگان

  • Dafna Singer-Lahat
  • Dodo Chikvashvili
  • Ilana Lotan
چکیده

K(+) efflux through voltage-gated K(+) (Kv) channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca(2+) influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle (DCV)-mediated release. Here, we focus on endogenous Kv2.1 channels and show that disruption of their interaction with native syntaxin after ATP-dependent priming of the vesicles by Kv2.1 syntaxin-binding peptides inhibits Ca(2+) -triggered exocytosis of DCVs from cracked PC12 cells in a specific and dose-dependent manner. The inhibition cannot simply be explained by the impairment of the interaction of syntaxin with its SNARE cognates. Thus, direct association between endogenous Kv2.1 and syntaxin enhances exocytosis and in combination with the Kv2.1 inhibitory effect to hyperpolarize the membrane potential, could contribute to the known activity dependence of DCV release in neuroendocrine cells and in dendrites where Kv2.1 commonly expresses and influences release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K+ channel facilitation of exocytosis by dynamic interaction with syntaxin.

Kv channels inhibit release indirectly by hyperpolarizing membrane potential, but the significance of Kv channel interaction with the secretory apparatus is not known. The Kv2.1 channel is commonly expressed in the soma and dendrites of neurons, where it could influence the release of neuropeptides and neurotrophins, and in neuroendocrine cells, where it could influence hormone release. Here we...

متن کامل

A dual function for Munc-18 in exocytosis of PC12 cells.

Munc-18 interacts with the SNARE protein syntaxin and is supposed to influence transmitter release by controlling the formation of exocytosis-relevant SNARE complexes. Here, we used combined biochemical and physiological analyses to study the role of the Munc-18/syntaxin interaction in large dense core vesicle (LDCV) exocytosis of neuroendocrine PC12 cells. We compared two Munc-18 mutants carry...

متن کامل

Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells.

Regulation of exocytosis by voltage-gated K(+) channels has classically been viewed as inhibition mediated by K(+) fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K(+) flux. Here, we show that Kv2.1-induced facilitation of release is not restricted to neuroendocrine cells, but also occurs in the somatic-vesic...

متن کامل

Direct interaction of target SNAREs with the Kv2.1 channel. Modal regulation of channel activation and inactivation gating.

Previously we suggested that interaction between voltage-gated K+ channels and protein components of the exocytotic machinery regulated transmitter release. This study concerns the interaction between the Kv2.1 channel, the prevalent delayed rectifier K+ channel in neuroendocrine and endocrine cells, and syntaxin 1A and SNAP-25. We recently showed in islet beta-cells that the Kv2.1 K+ current i...

متن کامل

Fusion Pore Dynamics Are Regulated by Synaptotagmin•t-SNARE Interactions

Exocytosis involves the formation of a fusion pore that connects the lumen of secretory vesicles with the extracellular space. Exocytosis from neurons and neuroendocrine cells is tightly regulated by intracellular [Ca2+] and occurs rapidly, but the molecular events that mediate the opening and subsequent dilation of fusion pores remain to be determined. A putative Ca2+ sensor for release, synap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008