E1A, E1B double-restricted adenovirus for oncolytic gene therapy of gallbladder cancer.
نویسندگان
چکیده
New treatments, such as gene therapy, are necessary for advanced gallbladder cancer (GBC), but little has been studied. Recent studies have introduced mutant adenoviruses (Ads) with either defective E1B-55kD or mutated E1A, focusing on tumor-specific replication, and the results have been promising. To enhance the safety of this approach, we constructed AxdAdB-3, a double-restricted Ad with a mutant E1A and E1B-55kD deletion. We studied the effects of this Ad in vitro and in vivo on GBC, as well as its safety for normal human cells. We compared the replication and cytopathic effects of AxdAdB-3 in several lines of GBC and primary normal cells with those of wild-type Ad or of AxE1AdB, an E1B-55kD-deleted Ad. The efficacy in vivo was examined in nude mice with s.c. implanted or i.p. disseminated GBC. AxdAdB-3 replicated in and caused oncolysis of GBC cell lines (TGBC-44TKB and Mz-ChA2) as efficiently as wild-type Ad or AxE1AdB in vitro. By contrast, AxdAdB-3 replicated much less effectively in primary normal cells (e.g., epithelial cells, endothelial cells, and hepatocytes) than in GBC cells and had only mild cytopathic effects, unlike wild-type Ad. Furthermore, cytotoxicity of AxdAdB-3 in normal cells was milder than that of AxE1AdB. AxdAdB-3 significantly (P < 0.01) suppressed the growth of GBC (TGBC-44TKB) xenografts. AxdAdB-3 was also effective in the treatment of mice with peritoneally disseminated GBC (TGBC-44TKB), demonstrating tumor-selective replication and oncolysis that resulted in significantly (P < 0.05) prolonged survival. The present study shows that the E1 double-restricted Ad effectively and selectively replicates in and causes oncolysis of GBC in vitro and in vivo with reduced negative effects on normal cells, suggesting that this approach could be a promising tool for gene therapy of GBC.
منابع مشابه
Arg-Gly-Asp (RGD)-Modified E1A/E1B Double Mutant Adenovirus Enhances Antitumor Activity in Prostate Cancer Cells In Vitro and in Mice
CAR is a transmembrane protein that is expressed in various epithelial and endothelial cells. CAR mediates adenoviral infection, as well as adenovirus-mediated oncolysis of AxdAdB-3, an E1A/E1B double-restricted oncolytic adenovirus, in prostate cancer cells. This study further assessed the therapeutic efficacy of AxdAdB-3 with Arg-Gly-Asp (RGD)-fiber modification (AxdAdB3-F/RGD), which enables...
متن کاملE1A, E1B double-restricted adenovirus with RGD-fiber modification exhibits enhanced oncolysis for CAR-deficient biliary cancers.
PURPOSE Cancers of biliary system represent highly malignant diseases of dismal prognosis. We have previously introduced AxdAdB3, an E1A, E1B double-restricted oncolytic adenovirus, which showed excellent oncolytic efficacy for approximately half of the biliary cancer lines with an enhanced safety to normal cells. The purpose of this study was to evaluate whether RGD-fiber modification (AxdAdB3...
متن کاملHuman telomerase reverse transcriptase promoter-driven oncolytic adenovirus with E1B-19 kDa and E1B-55 kDa gene deletions.
We constructed an oncolytic adenovirus, Adeno-hTERT-E1A, with deletions of the viral E1B, E3A, and E3B regions and insertion of a human telomerase reverse transcriptase (hTERT) promoter-driven early viral 1A (E1A) cassette that confers high transcriptional activity in multiple human tumor cell lines. The oncolytic potential of Adeno-hTERT-E1A was characterized in comparison with that of the E1B...
متن کاملLate expression of nitroreductase in an oncolytic adenovirus sensitizes colon cancer cells to the prodrug CB1954.
We have constructed an oncolytic adenovirus expressing the Escherichia coli nitroreductase gene nfsB from an internal ribosome entry site (IRES) in the adenovirus L5 major late transcript. The virus (Tcf-NTR) has Tcf transcription factor-binding sites in the E1A, E1B, and E4 promoters, which restrict viral replication to cells that have activation of the Wnt signaling pathway. This virus was co...
متن کاملGene therapy targeting hepatocellular carcinoma by a dual-regulated oncolytic adenovirus harboring the focal adhesion kinase shRNA.
Cancer targeting gene-viro-therapy (CTGVT) approach has become a hotspot and a trend in the field of cancer biotherapy and oncolytic adenovirus is an ideal vector to carry the targeting genes. In this study, we used human telomerase reverse transcriptase (hTERT) promoter to control the adenovirus early region 1a (E1A) and the human α-fetoprotein (AFP) promoter integrated with hypoxia response e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 15 شماره
صفحات -
تاریخ انتشار 2003