Is atmospheric phosphorus pollution altering global alpine lake stoichiometry?
نویسندگان
چکیده
Anthropogenic activities have significantly altered atmospheric chemistry and changed the global mobility of key macronutrients. Here we show that contemporary global patterns in nitrogen (N) and phosphorus (P) emissions drive large hemispheric variation in precipitation chemistry. These global patterns of nutrient emission and deposition (N:P) are in turn closely reflected in the water chemistry of naturally oligotrophic lakes (r = 0.81, p< 0.0001). Observed increases in anthropogenic N deposition play a role in nutrient concentrations (r = 0.20, p< 0.05); however, atmospheric deposition of P appears to be major contributor to this pattern (r = 0.65, p< 0.0001). Atmospheric simulations indicate a global increase in P deposition by 1.4 times the preindustrial rate largely due to increased dust and biomass burning emissions. Although changes in the mass flux of global P deposition are smaller than for N, the impacts on primary productivity may be greater because, on average, one unit of increased P deposition has 16 times the influence of one unit of N deposition. These stoichiometric considerations, combined with the evidence presented here, suggest that increases in P deposition may be a major driver of alpine Lake trophic status, particularly in the Southern Hemisphere. These results underscore the need for the broader scientific community to consider the impact of atmospheric phosphorus deposition on the water quality of naturally oligotrophic lakes.
منابع مشابه
Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains
Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources...
متن کاملRecent changes in production in oligotrophic Uinta Mountain lakes, Utah, identified using paleolimnology
We use multiple proxies from lake sediment records of six remote alpine lakes in the Uinta Mountains, Utah, to investigate primary production and potential drivers of changes in trophic status over the last two centuries. Chlorophyll a, chlorophyll a flux, and percentage of organic matter (determined by loss on ignition) increase beginning in the mid-20th century in five of the six alpine study...
متن کاملSediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands
1. We compared the extracellular enzyme activity (EEA) of sediment microbial assemblages with sediment and water chemistry, gradients in agricultural nutrient loading (derived from principal component analyses), atmospheric deposition and hydrological turnover time in coastal wetlands of the Laurentian Great Lakes. 2. There were distinct increases in nutrient concentrations in the water and in ...
متن کاملRefractory dissolved organic nitrogen accumulation in high-elevation lakes.
The role of dissolved organic matter (DOM) as either a sink for inorganic nutrients or an additional nutrient source is an often-neglected component of nutrient budgets in aquatic environments. Here, we examined the role of DOM in reactive nitrogen (N) storage in Sierra Nevada (California, USA) lakes where atmospheric deposition of N has shifted the lakes toward seasonal phosphorus (P)-limitati...
متن کاملNutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition.
Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented. We examined phytoplankton biomass, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017