Probabilistic Models to Predict the Growth Initiation Time for Pseudomonas spp. in Processed Meats Formulated with NaCl and NaNO2
نویسندگان
چکیده
This study developed probabilistic models to determine the initiation time of growth of Pseudomonas spp. in combinations with NaNO2 and NaCl concentrations during storage at different temperatures. The combination of 8 NaCl concentrations (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and 9 NaNO2 concentrations (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm) were prepared in a nutrient broth. The medium was placed in the wells of 96-well microtiter plates, followed by inoculation of a five-strain mixture of Pseudomonas in each well. All microtiter plates were incubated at 4, 7, 10, 12, and 15℃ for 528, 504, 504, 360 and 144 h, respectively. Growth (growth initiation; GI) or no growth was then determined by turbidity every 24 h. These growth response data were analyzed by a logistic regression to produce growth/no growth interface of Pseudomonas spp. and to calculate GI time. NaCl and NaNO2 were significantly effective (p<0.05) on inhibiting Pseudomonas spp. growth when stored at 4-12℃. The developed model showed that at lower NaCl concentration, higher NaNO2 level was required to inhibit Pseudomonas growth at 4-12℃. However, at 15℃, there was no significant effect of NaCl and NaNO2. The model overestimated GI times by 58.2±17.5 to 79.4±11%. These results indicate that the probabilistic models developed in this study should be useful in calculating the GI times of Pseudomonas spp. in combination with NaCl and NaNO2 concentrations, considering the over-prediction percentage.
منابع مشابه
Probabilistic Models to Predict the Growth Initiation Time for Pseudomonas spp. in Processed Meats Formulated with NaCl and NaNO
This study developed probabilistic models to determine the initiation time of growth of Pseudomonas spp. in combinations with NaNO 2 and NaCl concentrations during storage at different temperatures. The combination of 8 NaCl concentrations (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and 9 NaNO 2 concentrations (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm) were prepared in a nutrient broth. Th...
متن کاملEvaluation of Salmonella Growth at Low Concentrations of NaNO2 and NaCl in Processed Meat Products Using Probabilistic Model
This study developed probabilistic models to predict Salmonella growth in processed meat products formulated with varying concentrations of NaCl and NaNO2. A five-strain mixture of Salmonella was inoculated in nutrient broth supplemented with NaCl (0%, 0.25%, 0.5%, 0.75%, 0.5%, 1.0%, 1.25%, and 1.75%) and NaNO2 (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm). The inoculated samples were then incu...
متن کاملProbabilistic Models to Predict Listeria monocytogenes Growth at Low Concentrations of NaNO2 and NaCl in Frankfurters
This study developed probabilistic models to describe Listeria monocytogenes growth responses in meat products with low concentrations of NaNO2 and NaCl. A five-strain mixture of L. monocytogenes was inoculated in NBYE (nutrient broth plus 0.6% yeast extract) supplemented with NaNO2 (0-141 ppm) and NaCl (0-1.75%). The inoculated samples were then stored under aerobic and anaerobic conditions at...
متن کاملMathematical Model for Predicting the Growth Probability of Staphylococcus aureus in Combinations of NaCl and NaNO2 under Aerobic or Evacuated Storage Conditions
The objective of this study was to describe the growth patterns of Staphylococcus aureus in combinations of NaCl and NaNO2, using a probabilistic model. A mixture of S. aureus strains (NCCP10826, ATCC13565, ATCC14458, ATCC23235, and ATCC27664) was inoculated into nutrient broth plus NaCl (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and NaNO2 (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm). The s...
متن کاملGrowth limits of Staphylococcus aureus as a function of temperature, acetic acid, NaCl concentration, and inoculum level
Staphylococcus aureus is one of the most prevalent causes of gastroenteritis worldwide. Knowing the precise boundary for the growth/no growth interface of S. aureus and also determining the period of time needed for bacterial growth initiation is necessary for food safety risk assessment. This study was designed to examine the combined effects of temperature, acetic acid, inoculum level and NaC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 34 شماره
صفحات -
تاریخ انتشار 2014