Mixtures of charged colloid and neutral polymer: influence of electrostatic interactions on demixing and interfacial tension.
نویسندگان
چکیده
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter-the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.
منابع مشابه
Depletion-induced phase separation in colloid-polymer mixtures.
Phase separation can be induced in a colloidal dispersion by adding non-adsorbing polymers. Depletion of polymer around the colloidal particles induces an effective attraction, leading to demixing at sufficient polymer concentration. This communication reviews theoretical and experimental work carried out on the polymer-mediated attraction between spherical colloids and the resulting phase sepa...
متن کاملEffect of excluded volume interactions on the interfacial properties of colloid-polymer mixtures.
We report a numerical study of equilibrium phase diagrams and interfacial properties of bulk and confined colloid-polymer mixtures using grand canonical Monte Carlo simulations. Colloidal particles are treated as hard spheres, while the polymer chains are described as soft repulsive spheres. The polymer-polymer, colloid-polymer, and wall-polymer interactions are described by density-dependent p...
متن کاملA density–functional study of interfacial properties of colloid–polymer mixtures∗
Abstract Interfacial properties of colloid–polymer mixtures are examined within an effective one– component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer–induced depletion forces. Restriction is made to zero, one and two–body effective potentials, and a free energy functional is used which treats colloid exclu...
متن کاملDensity-functional study of interfacial properties of colloid-polymer mixtures.
Interfacial properties of colloid-polymer mixtures are examined within an effective one-component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer-induced depletion forces. Restriction is made to zero-, one-, and two-body effective potentials, and a free energy functional is used that treats colloid excluded volu...
متن کاملSimulation and theory of fluid demixing and interfacial tension of mixtures of colloids and nonideal polymers.
An extension of the Asakura-Oosawa-Vrij model of hard sphere colloids and nonadsorbing polymers is studied with grand canonical Monte Carlo simulations and density functional theory. Polymer nonideality is taken into account through a repulsive step-function pair potential between polymers. Simulation results validate previous theoretical findings for the shift of the bulk fluid demixing binoda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 122 24 شماره
صفحات -
تاریخ انتشار 2005