Genetically engineered elastin-protein A fusion as a universal platform for homogeneous, phase-separation immunoassay.
نویسندگان
چکیده
A simple and universal platform for competitive phase-separation immunoassay is reported based on a fusion protein composed of a temperature-responsive elastin-like polypeptide (ELP) and the antibody-binding staphylococcal protein A (SpA). The basic principle is to take advantage of the ability of SpA to bind a variety of antibodies with high affinity, allowing simple separation of antigen-antibody complex by thermal precipitation. The resulting ELP-SpA fusion was shown to preserve the ability to reversibly precipitate as well as its high affinity toward different IgGs and IgMs. As a model system, a competitive phase-separation immunoassay based on the ELP-SpA format was established for paclitaxel (taxol) with IC(50) (20.18 nM) and the lower detection limit (2.94 nM) very similar to those reported for the ELISA format. Unlike the heterogeneous interaction in ELISA, which decreases the antibody-binding activity, the reported homogeneous immunoassay not only alleviates this problem but also enables the potential for high-throughput automation. We believe that the reported ELP-SpA fusion will find applications not only as a powerful diagnostic tool for diverse analytes but also a potential useful tool for purification and immobilization of antibody.
منابع مشابه
Simple conjugation and purification of quantum dot-antibody complexes using a thermally responsive elastin-protein L scaffold as immunofluoresecent agents.
Fluorescent quantum dots (QDs), because of their tunable spectral properties, are ideal for simultaneous multiplexed detection in an antibody array format. Despite these advantages, their widespread usage is limited by the costly and tedious conjugation and separation protocol. Herein, we report a simple platform for the direct conjugation and separation of highly luminescent CdSe-ZnS QD-antibo...
متن کاملFeatures and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly
One of the major challenges in the field of tissue engineering is the production of scaffolding in nano-scale. The study of structural-functional connections in pathological and normal tissues with biologically active alternatives or engineered materials has been developed. Extracellular Matrix (ECM) is a suitable environment consisting of gelatin, elastin and collagen types I, II and III, etc....
متن کاملDesign of luciferase-displaying protein nanoparticles for use as highly sensitive immunoassay detection probes.
In this study, we developed a protein nanoparticle-based immunoassay to detect cancer biomarkers using a bioluminescent fusion protein. This method relies on the use of protein nanoparticles comprised of genetically-engineered elastin-like polypeptides (ELPs) fused with poly-aspartic acid tails (ELP-D), previously developed in our lab. The sizes of the self-assembled ELP-D nanoparticles can be ...
متن کاملGenetically engineered nanocarriers for drug delivery
Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-media...
متن کاملElastin-like polypeptides as a promising family of genetically-engineered protein based polymers
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val-Pro-Gly-Xaa-Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 77 8 شماره
صفحات -
تاریخ انتشار 2005