On the image of Euler’s totient function

نویسنده

  • R. Coleman
چکیده

Euler's totient function φ is the function defined on the positive natural numbers N * in the following way: if n ∈ N * , then φ(n) is the cardinal of the set {x ∈ N * : 1 ≤ x ≤ n, (x, n) = 1}, where (x, n) is the pgcd of x and n. Thus φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, and so on. The principle aim of this article is to study certain aspects of the image of the function φ. 1 Elementary properties Clearly φ(p) = p − 1, for any prime number p and, more generally, if α ∈ N * , then φ(p α) = p α − p α−1. This follows from the fact that the only numbers which are not coprime with p α are multiples of p and there are p α−1 such multiples x with 1 ≤ x ≤ p α .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probabilistic Look at Series Involving Euler’s Totient Function

We use a probabilistic method to evaluate the limit of ∑n x=1 φ(x)x r−1 n−(r+1), where φ(x) is the Euler totient function and r is a nonnegative integer. We extend the probabilistic method to evaluate two other generalized types of series that involve Euler’s totient function. In addition to the probabilistic method, an analytic approach is presented to evaluate the series when the exponent par...

متن کامل

On Perfect Totient Numbers

Let n > 2 be a positive integer and let φ denote Euler’s totient function. Define φ(n) = φ(n) and φ(n) = φ(φ(n)) for all integers k ≥ 2. Define the arithmetic function S by S(n) = φ(n) + φ(n) + · · ·+ φ(n) + 1, where φ(n) = 2. We say n is a perfect totient number if S(n) = n. We give a list of known perfect totient numbers, and we give sufficient conditions for the existence of further perfect ...

متن کامل

On Sparsely Schemmel Totient Numbers

For each positive integer r, let Sr denote the rth Schemmel totient function, a multiplicative arithmetic function defined by Sr(p) = ( 0, if p  r; p↵ 1(p r), if p > r for all primes p and positive integers ↵. The function S1 is simply Euler’s totient function . Masser and Shiu have established several fascinating results concerning sparsely totient numbers, positive integers n satisfying (n) ...

متن کامل

The Distribution of Totients

This paper is an announcement of many new results concerning the set of totients, i.e. the set of values taken by Euler’s φ-function. The main functions studied are V (x), the number of totients not exceeding x, A(m), the number of solutions of φ(x) = m (the “multiplicity” of m), and Vk(x), the number of m ≤ x with A(m) = k. The first of the main results of the paper is a determination of the t...

متن کامل

On the Composition of Some Arithmetic Functions, Ii

We study certain properties and conjuctures on the composition of the arithmetic functions σ, φ, ψ, where σ is the sum of divisors function, φ is Euler’s totient, and ψ is Dedekind’s function.

متن کامل

Sets of Monotonicity for Euler’s Totient Function

We study subsets of [1, x] on which the Euler φ-function is monotone (nondecreasing or nonincreasing). For example, we show that for any > 0, every such subset has size < x, once x > x0( ). This confirms a conjecture of the second author.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009