Exploiting Variance Reduction Potential in Local Gaussian Process Search
نویسندگان
چکیده
Gaussian process models are commonly used as emulators for computer experiments. However, developing a Gaussian process emulator can be computationally prohibitive when the number of experimental samples is even moderately large. Local Gaussian process approximation (Gramacy and Apley, 2015) was proposed as an accurate and computationally feasible emulation alternative. However, constructing local sub-designs specific to predictions at a particular location of interest remains a substantial computational bottleneck to the technique. In this paper, two computationally efficient neighborhood search limiting techniques are proposed, a maximum distance method and a feature approximation method. Two examples demonstrate that the proposed methods indeed save substantial computation while retaining emulation accuracy.
منابع مشابه
The mesh adaptive direct search algorithm with treed Gaussian process surrogates ∗
This work introduces the use of the treed Gaussian process (TGP) as a surrogate model within the mesh adaptive direct search (MADS) framework for constrained blackbox optimization. It extends the surrogate management framework (SMF) to nonsmooth optimization under general constraints. MADS uses TGP in two ways: one, as a surrogate for blackbox evaluations; and two, to evaluate statistical crite...
متن کاملPotentially Predictive Variance Reducing Subsample Locations in Local Gaussian Process Regression
Gaussian process models are commonly used as emulators for computer experiments. However, developing a Gaussian process emulator can be computationally prohibitive when the number of experimental samples is even moderately large. Local Gaussian process approximation (Gramacy and Apley, 2015) has been proposed as an accurate and computationally feasible emulation technique. Constructing sub-desi...
متن کاملNear-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
When monitoring spatial phenomena, which can often be modeled as Gaussian processes (GPs), choosing sensor locations is a fundamental task. There are several common strategies to address this task, for example, geometry or disk models, placing sensors at the points of highest entropy (variance) in the GP model, and A-, D-, or E-optimal design. In this paper, we tackle the combinatorial optimiza...
متن کاملSensitivity estimation for Gaussian systems
In this paper we address the construction of efficient algorithms for the estimation of gradients of general performance measures of Gaussian systems. Exploiting a clever coupling between the normal and the Maxwell distribution, we present a new gradient estimator, and we show that it outperforms both the single-run based infinitesimal perturbation analysis (IPA) estimator and the score functio...
متن کاملGaussian Process for Dimensionality Reduction in Transfer Learning
Dimensionality reduction has been considered as one of the most significant tools for data analysis. In general, supervised information is helpful for dimensionality reduction. However, in typical real applications, supervised information in multiple source tasks may be available, while the data of the target task are unlabeled. An interesting problem of how to guide the dimensionality reductio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016