Compression-Based Induction and Genome Data

نویسندگان

  • Rattikorn Hewett
  • John H. Leuchner
  • Choh-Man Teng
  • Sean D. Mooney
  • Teri E. Klein
چکیده

Our previous work developed SORCER, a learning system that induces a set of rules from a data set represented as a second-order decision table. Second-order decision tables are database relations in which rows have sets of atomic values as components. Using sets of values, which are interpreted as disjunctions, provides compact representations that facilitate efficient management and enhance comprehensibility. SORCER generates classifiers with a near minimum number of rows. The induction algorithm can be viewed as a table compression technique in which a table of training data is transformed into a second-order table with fewer rows by merging rows in ways that preserve consistency with the training data. In this paper we propose three new mechanisms in SORCER: (1) compression by removal of table columns, (2) inclusion of simple rules based on statistics, and (3) a method for partitioning continuous data into discrete clusters. We apply our approach to classify clinical phenotypes of a genetic collagenous disorder, Osteogenesis imperfecta, using a data set of point mutations in COLIA1 gene. Preliminary results show that on the average, over ten 10-fold cross validations, SORCER obtained an error estimate of 16.7 %, compared to 35.1 % obtained from the decision tree learner, C4.5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of VlSI Based Image Compression Approach on Reconfigurable Computing System - A Survey

Image data require huge amounts of disk space and large bandwidths for transmission. Hence, imagecompression is necessary to reduce the amount of data required to represent a digital image. Thereforean efficient technique for image compression is highly pushed to demand. Although, lots of compressiontechniques are available, but the technique which is faster, memory efficient and simple, surely...

متن کامل

DNA Data Compression Based on the Whole Genome Sequence

In order to cope with the rapidly growing genome sequence data, we need a new method for compression. The compression ratios of existing algorithms are just about 1.6 bits per base. Furthermore, it is impossible to compare DNA sequences in their compressed or encoded form. Provided that an anchor point called the whole genome sequence for each organism has been setup in the post genome era, thi...

متن کامل

An Algorithm for Browsing the Referentially-compressed Genomes

Genome resequencing produces enormous amount of data daily. Biologists need to frequently mine this data with the provided processing and storage resources. Therefore, it becomes very critical to professionally store this data in order to efficiently browse it in a frequent manner. Reference-based Compression algorithms (RbCs) showed significant genome compression results compared to the tradit...

متن کامل

MEDICAL IMAGE COMPRESSION: A REVIEW

Within recent years the use of medical images for diagnosis purposes has become necessity. The limitation in transmission and storage space also growing size of medical images has necessitated the need for efficient method, then image Compression is required as an efficient way to reduces irrelevant and redundancy of the image data in order to be able to store or transmits data. It also reduces...

متن کامل

ERGC: an efficient referential genome compression algorithm

MOTIVATION Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002