Learning of Variability for Invariant Statistical Pattern Recognition

نویسندگان

  • Daniel Keysers
  • Wolfgang Macherey
  • Jörg Dahmen
  • Hermann Ney
چکیده

In many applications, modelling techniques are necessary which take into account the inherent variability of given data. In this paper, we present an approach to model class specific pattern variation based on tangent distance within a statistical framework for classification. The model is an effective means to explicitly incorporate invariance with respect to transformations that do not change class-membership like e.g. small affine transformations in the case of image objects. If no prior knowledge about the type of variability is available, it is desirable to learn the model parameters from the data. The probabilistic interpretation presented here allows us to view learning of the variational derivatives in terms of a maximum likelihood estimation problem. We present experimental results from two different real-world pattern recognition tasks, namely image object recognition and automatic speech recognition. On the US Postal Service handwritten digit recognition task, learning of variability achieves results well comparable to those obtained using specific domain knowledge. On the SieTill corpus for continuously spoken telephone line recorded German digit strings the method shows a significant improvement in comparison with a common mixture density approach using a comparable amount of parameters. The probabilistic model is well-suited to be used in the field of statistical pattern recognition and can be extended to other domains like cluster analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape variability and spatial relationships modeling in statistical pattern recognition

We focus on the problem of shape variability modeling in statistical pattern recognition. We present a nonlinear statistical model invariant to affine transformations. This model is learned on an ordinate set of points. The concept of relations between model components is also taken in account. This model is used to find curves and points partially occulted in the image. We present its applicat...

متن کامل

Invariant Recognition Of Human Faces

Visual communication plays an important role in human communication and interaction. In order to interact socially, we must be able to process faces in a variety of ways. In this paper, an algorithm for invariant recognition of human faces based on LVQ neural network is presented. The proposed system is shown to exhibit robustness in achieving better classification results with both good genera...

متن کامل

A comparison of SVM and HMM classifiers in the off-line signature verification

The SVM is a new classification technique in the field of statistical learning theory which has been applied with success in pattern recognition applications like face and speaker recognition, while the HMM has been found to be a powerful statistical technique which is applied to handwriting recognition and signature verification. This paper reports on a comparison of the two classifiers in off...

متن کامل

Object Recognition and Detection by a Combination of Support Vector Machine and Rotation Invariant Phase Only Correlation

This paper proposes an object recognition and detection method by a combination of Support Vector Machine Classifier (SVM) and Rotation Invariant Phase Only Correlation (RIPOC). SVM is a learning technique that is well founded in statistical learning theory. RIPOC is a position and rotation invariant pattern matching technique. We combined these two techniques to develop an augmented reality sy...

متن کامل

Object Recognition from Degraded I M A

CHAPTER 1 INTRODUrnON 1.1 Object recognition from degraded images 1.1.1 Sensor array imaging context 1.1.2 Need for an object recognition system 1.2 Need for adaptive processing and Neural networks 1.2.1 Shortcomings of traditional pattern recognition techniques 1.2.2 Need for adaptive processing 1.2.3 Artificial neural networks 1.3 Overview of the thesis 1.3.1 Motivation 1.3.2 Scope 1.3.3 Thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001