Generalized limits for single-parameter quantum estimation.
نویسندگان
چکیده
We develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multisystem interactions. For a Hamiltonian with k-system parameter-sensitive terms, the quantum limit scales as 1/Nk, where N is the number of systems. These quantum limits remain valid when the Hamiltonian is augmented by any parameter-independent interaction among the systems and when adaptive measurements via parameter-independent coupling to ancillas are allowed.
منابع مشابه
Quantum Limits on Parameter Estimation
We present a new proof of the quantum Cramer-Rao bound for precision parameter estimation [1–3] and extend it to a more general class of measurement procedures. We analyze a generalized framework for parameter estimation that covers most experimentally accessible situations, where multiple rounds of measurements, auxiliary systems or external control of the evolution are available. The proof pr...
متن کاملCanonical thermostatics of ideal gas in the frame work of generalized uncertainty principle
The statistical consequences of minimal length supposition are investigated for a canonical ensemble of ideal gas. These effects are encoded in the so-called Generalized Uncertainty Principle (GUP) of the second order. In the frame work of the considered GUP scenario, a unique partition function is obtained by using of two different methods of quantum and classical approaches. It should be noti...
متن کاملA Novel Method for Estimation of The Fundamental Parameters of Distorted Single Phase Signals
This paper proposes a new method for parameter estimation of distorted single phase signals, through an improved demodulation-based phase tracking incorporated with a frequency adaptation mechanism. The simulation results demonstrate the superiority of the proposed method compared to the conventional SOGI (Second-Order Generalized Integrator)-based approach, in spite of the dc-offset and harmon...
متن کاملThe two parameter quantum groups $U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra and their equitable presentation
We construct a family of two parameter quantum grou-\ps $U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody algebra corresponding to symmetrizable admissible Borcherds Cartan matrix. We also construct the $textbf{A}$-form $U_{textbf{A}}$ and the classical limit of $U_{r,s}(mathfrak{g})$. Furthermore, we display the equitable presentation for a subalgebra $U_{r...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 98 9 شماره
صفحات -
تاریخ انتشار 2007