Generic Well-Posedness of Linear Optimal Control Problems without Convexity Assumptions
نویسنده
چکیده
The Tonelli existence theorem in the calculus of variations and its subsequent modifications were established for integrands f which satisfy convexity and growth conditions. In our previous work a generic well-posedness result (with respect to variations of the integrand of the integral functional) without the convexity condition was established for a class of optimal control problems satisfying the Cesari growth condition. In this paper we extend this generic well-posedness result to two classes of linear optimal control problems.
منابع مشابه
Generic Existence of Solutions of Nonconvex Optimal Control Problems
The Tonelli existence theorem in the calculus of variations and its subsequent modifications were established for integrands f which satisfy convexity and growth conditions. In 1996, the author obtained a generic existence and uniqueness result (with respect to variations of the integrand of the integral functional) without the convexity condition for a class of optimal control problems satisfy...
متن کاملHölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملNonlinear Optimal Control via Occupation Measures and LMI-Relaxations
We consider the class of nonlinear optimal control problems (OCP) with polynomial data, i.e., the differential equation, state and control constraints and cost are all described by polynomials, and more generally for OCPs with smooth data. In addition, state constraints as well as state and/or action constraints are allowed. We provide a simple hierarchy of LMI (linear matrix inequality)-relaxa...
متن کاملM ar 2 00 7 NONLINEAR OPTIMAL CONTROL VIA OCCUPATION MEASURES AND LMI - RELAXATIONS
We consider the class of nonlinear optimal control problems (OCP) with polynomial data, i.e., the differential equation, state and control constraints and cost are all described by polynomials, and more generally for OCPs with smooth data. In addition, state constraints as well as state and/or action constraints are allowed. We provide a simple hierarchy of LMI (linear matrix inequality)-relaxa...
متن کاملHadamard Well-posedness for a Family of Mixed Variational Inequalities and Inclusion Problems
In this paper, the concepts of well-posednesses and Hadamard well-posedness for a family of mixed variational inequalities are studied. Also, some metric characterizations of them are presented and some relations between well-posedness and Hadamard well-posedness of a family of mixed variational inequalities is studied. Finally, a relation between well-posedness for the family of mixed variatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006