Differential modulation of respiratory neuronal discharge patterns by GABA(A) receptor and apamin-sensitive K(+) channel antagonism.

نویسندگان

  • V Tonkovic-Capin
  • A G Stucke
  • E A Stuth
  • M Tonkovic-Capin
  • M Krolo
  • F A Hopp
  • D R McCrimmon
  • E J Zuperku
چکیده

The discharge patterns of respiratory neurons of the caudal ventral respiratory group (cVRG) appear to be subject to potent GABAergic gain modulation. Local application of the GABA(A) receptor antagonist bicuculline methochloride amplifies the underlying discharge frequency (F(n)) patterns mediated by endogenous excitatory and inhibitory synaptic inputs. Gain modulation can also be produced by alterations in the amplitude of spike afterhyperpolarizations (AHPs) mediated by apamin-sensitive small-conductance Ca(2+)-activated K(+) (SK) channels. Since methyl derivatives of bicuculline (BICm) also have been shown to reduce the amplitude of AHPs, in vitro, it is possible that the BICm-induced gain modulation is due to a block of SK channels. The purpose of these studies was to determine the mechanisms by which BICm produces gain modulation and to characterize the influence of SK channels in the control of respiratory neuron discharge. Six protocols were used in this in vivo study of cVRG inspiratory (I) and expiratory (E) neurons in decerebrate, paralyzed, ventilated dogs. The protocols included characterizations of the neuronal responses to 1) BICm and apamin on the same neuron, 2) BICm during maximum apamin-induced block of AHPs, 3) apamin during maximum BICm-induced gain modulatory responses, 4) the specific GABA(A) receptor antagonist, (+)beta-hydrastine, 5) the specific GABA(A) receptor agonist, muscimol, and 6) the GABA uptake inhibitor, nipecotic acid. For protocols 3, 5, and 6, only E neurons were studied. Four-barrel micropipettes were used for extracellular single neuron recording and pressure ejection of drugs. Cycle-triggered histograms were used to quantify the F(n) patterns and to determine the drug-induced changes in the gain (slope) and offset of the F(n) patterns. Compared to apamin at maximum effective dose rates, BICm produced a 2.1-fold greater increase in peak F(n) and a 3.1-fold greater increase in average F(n). BICm and apamin produced similar increases in gain, but the offsets due to apamin were more negative. The responses to hydrastine were similar to BICm. During maximum apamin block, BICm produced an additional 112 +/- 22% increase in peak F(n). Conversely, apamin produced an additional 176 +/- 74% increase in peak F(n) during the maximum BICm-induced response. Muscimol and nipecotic acid both decreased the gain and offset of the discharge patterns. Taken together, these results suggest that the gain modulatory effect of BICm is due to a reduction of GABA(A)-ergic shunting inhibition rather than a reduction in AHPs by block of SK channels in canine cVRG neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential processing of excitation by GABAergic gain modulation in canine caudal ventral respiratory group neurons.

The discharge frequency (F(n)) patterns of medullary respiratory premotor neurons are subject to potent tonic GABAergic gain modulation. Studies in other neuron types suggest that the synaptic input for tonic inhibition is located on the soma where it can affect total neuronal output. However, our preliminary data suggested that excitatory responses elicited by highly local application of gluta...

متن کامل

Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns.

To ascertain the role of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in shaping and controlling the phasic discharge patterns of medullary respiratory premotor neurons, localized pressure applications of the competitive GABAA receptor antagonist bicuculline (BIC) and the noncompetitive GABAA receptor antagonist picrotoxin (PIC) were studied. Multibarrel micropipettes were use...

متن کامل

Differential effects of apamin- and charybdotoxin-sensitive K+ conductances on spontaneous discharge patterns of developing retinal ganglion cells.

The spontaneous discharge patterns of developing retinal ganglion cells are thought to play a crucial role in the refinement of early retinofugal projections. To investigate the contributions of intrinsic membrane properties to the spontaneous activity of developing ganglion cells, we assessed the effects of blocking large and small calcium-activated potassium conductances on the temporal patte...

متن کامل

A combined blockade of glycine and calcium-dependent potassium channels abolishes the respiratory rhythm.

In order to test whether glycinergic inhibition is essential for the in vivo respiratory rhythm, we analysed the discharge properties of neurones in the medullary respiratory network after blockade of glycine receptors in the in situ perfused brainstem preparation of mature wild type and oscillator mice with a deficient glycine receptor. In wild type mice, selective blockade of glycine receptor...

متن کامل

ATP-sensitive K(+) channels regulate the release of GABA in the ventromedial hypothalamus during hypoglycemia.

OBJECTIVE-To determine whether alterations in counterregulatory responses to hypoglycemia through the modulation of ATP-sensitive K(+) channels (K(ATP) channels) in the ventromedial hypothalamus (VMH) are mediated by changes in GABAergic inhibitory tone in the VMH, we examined whether opening and closing K(ATP) channels in the VMH alter local GABA levels and whether the effects of modulating K(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 5  شماره 

صفحات  -

تاریخ انتشار 2001