Independent activation of distinct pores in dimeric TMEM16A channels
نویسندگان
چکیده
The TMEM16 family encompasses Ca2+-activated Cl- channels (CaCCs) and lipid scramblases. These proteins are formed by two identical subunits, as confirmed by the recently solved crystal structure of a TMEM16 lipid scramblase. However, the high-resolution structure did not provide definitive information regarding the pore architecture of the TMEM16 channels. In this study, we express TMEM16A channels constituting two covalently linked subunits with different Ca2+ affinities. The dose-response curve of the heterodimer appears to be a weighted sum of two dose-response curves-one corresponding to the high-affinity subunit and the other to the low-affinity subunit. However, fluorescence resonance energy transfer experiments suggest that the covalently linked heterodimeric proteins fold and assemble as one molecule. Together these results suggest that activation of the two TMEM16A subunits likely activate independently of each other. The Ca2+ activation curve for the heterodimer at a low Ca2+ concentration range ([Ca2+] < 5 µM) is similar to that of the wild-type channel-the Hill coefficients in both cases are significantly greater than one. This suggests that Ca2+ binding to one subunit of TMEM16A is sufficient to activate the channel and that each subunit contains more than one Ca2+-binding site. We also take advantage of the I-V curve rectification that results from mutation of a pore residue to address the pore architecture of the channel. By introducing the pore mutation and the mutation that alters Ca2+ affinity in the same or different subunits, we demonstrate that activation of different subunits appears to be associated with the opening of different pores. These results suggest that the TMEM16A CaCC may also adopt a "double-barrel" pore architecture, similar to that found in CLC channels and transporters.
منابع مشابه
Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A
The TMEM16 proteins constitute a family of membrane proteins with unusual functional breadth, including lipid scramblases and Cl- channels. Members of both these branches are activated by Ca2+, acting from the intracellular side, and probably share a common architecture, which was defined in the recent structure of the lipid scramblase nhTMEM16. The structural features of subunits and the arran...
متن کاملIndependent activation of distinct pores in dimeric TMEM16A channels
Members of the TMEM16 gene family are transmembrane proteins classified into two functional categories: Ca-activated ion channels (Caputo et al., 2008; Schroeder et al., 2008; Yang et al., 2008) and phospholipid scramblases (Suzuki et al., 2010, 2013; Yang et al., 2012; Malvezzi et al., 2013). TMEM16A and TMEM16B in this family form Ca-activated Cl− channels (CaCCs) critical for various physiol...
متن کاملPreassociated apocalmodulin mediates Ca2+-dependent sensitization of activation and inactivation of TMEM16A/16B Ca2+-gated Cl- channels.
Ca(2+)-activated chloride currents carried via transmembrane proteins TMEM16A and TMEM16B regulate diverse processes including mucus secretion, neuronal excitability, smooth muscle contraction, olfactory signal transduction, and cell proliferation. Understanding how TMEM16A/16B are regulated by Ca(2+) is critical for defining their (patho)/physiological roles and for rationally targeting them t...
متن کاملThe bestrophin- and TMEM16A-associated Ca2+-activated Cl– channels in vascular smooth muscles
The presence of Ca(2+)-activated Cl(–) currents (I(Cl(Ca))) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca(2+)]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with I(Cl(Ca)). Two distinct I(Cl(Ca)) are characterized in VSMCs; the cGM...
متن کاملMechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker
BACKGROUND AND PURPOSE Calcium-activated chloride channels (CaCCs) play varied physiological roles and constitute potential therapeutic targets for conditions such as asthma and hypertension. TMEM16A encodes a CaCC. CaCC pharmacology is restricted to compounds with relatively low potency and poorly defined selectivity. Anthracene-9-carboxylic acid (A9C), an inhibitor of various chloride channel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 148 شماره
صفحات -
تاریخ انتشار 2016