Diazoxide-Unresponsive Congenital Hyperinsulinism in Children With Dominant Mutations of the β-Cell Sulfonylurea Receptor SUR1
نویسندگان
چکیده
OBJECTIVE Congenital hyperinsulinemic hypoglycemia is a group of genetic disorders of insulin secretion most commonly associated with inactivating mutations of the β-cell ATP-sensitive K(+) channel (K(ATP) channel) genes ABCC8 (SUR1) and KCNJ11 (Kir6.2). Recessive mutations of these genes cause hyperinsulinism that is unresponsive to treatment with diazoxide, a channel agonist. Dominant K(ATP) mutations have been associated with diazoxide-responsive disease. We hypothesized that some medically uncontrollable cases with only one K(ATP) mutation might have dominant, diazoxide-unresponsive disease. RESEARCH DESIGN AND METHODS Mutations of the K(ATP) genes were identified by sequencing genomic DNA. Effects of mutations on K(ATP) channel function in vitro were studied by expression in COSm6 cells. RESULTS In 15 families with diazoxide-unresponsive diffuse hyperinsulism, we found 17 patients with a monoallelic missense mutation of SUR1. Nine probands had de novo mutations, two had an affected sibling or parent, and four had an asymptomatic carrier parent. Of the 13 different mutations, 12 were novel. Expression of mutations revealed normal trafficking of channels but severely impaired responses to diazoxide or MgADP. Responses were significantly lower compared with nine SUR1 mutations associated with dominant, diazoxide-responsive hyperinsulinism. CONCLUSIONS These results demonstrate that some dominant mutations of SUR1 can cause diazoxide-unresponsive hyperinsulinism. In vitro expression studies may be helpful in distinguishing such mutations from dominant mutations of SUR1 associated with diazoxide-responsive disease.
منابع مشابه
Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1.
ATP-sensitive potassium channels play a major role in linking metabolic signals to the exocytosis of insulin in the pancreatic beta cell. These channels consist of two types of protein subunit: the sulfonylurea receptor SUR1 and the inward rectifying potassium channel Kir6.2. Mutations in the genes encoding these proteins are the most common cause of congenital hyperinsulinism (CHI). Since 1973...
متن کاملMolecular mechanisms of congenital hyperinsulinism due to autosomal dominant mutations in ABCC8.
Congenital Hyperinsulinism (CHI) is a rare heterogeneous disease characterized by unregulated insulin secretion. Dominant mutations in ABCC8 causing medically unresponsive CHI have been reported; however, the molecular mechanisms are not clear. The molecular basis of medically unresponsive CHI due to dominant ABCC8 mutations has been studied in 10 patients, who were medically unresponsive to di...
متن کاملDominantly acting ABCC8 mutations in patients with medically unresponsive hyperinsulinaemic hypoglycaemia
Recessive inactivating mutations in the ABCC8 and KCNJ11 genes encoding the adenosine triphosphate-sensitive potassium (K(ATP)) channel subunit sulphonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel subunit (Kir6.2) are the most common cause of hyperinsulinaemic hypoglycaemia (HH). Most of these patients do not respond to treatment with the (K(ATP)) channel agonist diazoxide....
متن کاملClinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor.
Recessive mutations of sulfonylurea receptor 1 (SUR1) and potassium inward rectifier 6.2 (Kir6.2), the two adjacent genes on chromosome 11p that comprise the beta-cell plasma membrane ATP-sensitive K(+) (K(ATP)) channels, are responsible for the most common form of congenital hyperinsulinism in children. The present study was undertaken to identify the genetic defect in a family with dominantly...
متن کاملDysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations.
Mutations in the high-affinity sulfonylurea receptor (SUR)-1 cause one of the severe recessively inherited diffuse forms of congenital hyperinsulinism or, when associated with loss of heterozygosity, focal adenomatosis. We hypothesized that SUR1 mutations would render the beta-cell insensitive to sulfonylureas and to glucose. Stimulated insulin responses were compared among eight patients with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 60 شماره
صفحات -
تاریخ انتشار 2011