Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens.
نویسندگان
چکیده
Acid-base titration experiments and electrostatic force microscopy (EFM) were used to investigate the cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria, Shewanella putrefaciens. The acid-base titrations extended from pH 4 to 10, and the titration data were fit using a linear programming pKa spectrum approach. Overall, a five-site model accounted for the observed titration behavior with the most acidic sites corresponding to carboxylic groups and phosphodiester groups, intermediate sites phosphoryl groups, and two basic sites equivalent to amine or hydroxyl groups. The pH for the point of zero charge on the bacteria was 5.4. In EFM images of cells rinsed in solutions at pH 4.0, 7.0, and 8.0, a pronounced increase in small (< or = 100 nm diameter) high contrast patches was observed on the cells with increasing pH. The pH dependence of EFM image contrast paralleled the pattern of cell surface charge development inferred from the titration experiments; however, quantitative analysis of high contrast regions in the EFM images yielded lower surface charge values than those anticipated from the titration data. For example at pH 7, the calculated surface charge of high contrast regions in EFM images of the bacterial cells was -0.23 microC/cm2 versus -20.0 microC/cm2 based on the titration curve. The differences in surface charge estimates between the EFM images and titration data are consistent not only with charge development throughout the entire volume of the bacterial cell wall (i.e., in association with functional groups that are not directly exposed at the cell surface) but also with the presence of a thin structural layer of water containing charge-compensating counterions. In combination, the pKa spectra and EFM data demonstrate that a particularly high degree of electrochemical heterogeneity exists within the cell wall and at the cell surface of S. putrefaciens.
منابع مشابه
Reduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model
A kinetic model for the microbial reduction of Fe(III) oxyhydroxide colloids in the presence of excess electron donor is presented. The model assumes a two-step mechanism: (1) attachment of Fe(III) colloids to the cell surface and (2) reduction of Fe(III) centers at the surface of attached colloids. The validity of the model is tested using Shewanella putrefaciens and nanohematite as model diss...
متن کاملEffects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens.
Shewanella putrefaciens, a heterotrophic member of the gamma-proteobacteria is capable of respiring anaerobically on Fe(III) as the sole terminal electron acceptor (TEA). Recent genetic and biochemical studies have indicated that anaerobic Fe(III) respiration by S. putrefaciens requires outer-membrane targeted secretion of respiration-linked Fe(III) reductases. Thus, the availability of Fe(III)...
متن کاملSIMULTANEOUS REDUCTION OF U(VI) AND Fe(III):
8 Dissimilatory metal reducing bacteria (DMRB) are capable of reducing contaminants such as 9 Cr(VI), Se(VI) and U(VI) during respiration, a process that has a pronounced impact on the 10 mobility of these contaminants in surface and subsurface environments. DMRB can also 11 reduce Fe(III), most commonly associated with solid phase (hydr)oxide minerals such as 12 ferrihydrite, goethite, or hema...
متن کاملImprovement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: effect of different anodic operating conditions.
Three different approaches were employed to improve single chambered microbial fuel cell (sMFC) performance using Shewanella putrefaciens as biocatalyst. Taguchi design was used to identify the key process parameter (anolyte concentration, CaCl₂ and initial anolyte pH) for maximization of volumetric power. Supplementation of CaCl₂ was found most significant and maximum power density of 4.92 W/m...
متن کاملRegulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens.
Under anaerobic conditions, Shewanella putrefaciens is capable of respiratory-chain-linked, high-rate dissimilatory iron reduction via both a constitutive and inducible Fe(III)-reducing system. In the presence of low levels of dissolved oxygen, however, iron reduction by this microorganism is extremely slow. Fe(II)-trapping experiments in which Fe(III) and O(2) were presented simultaneously to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 35 2 شماره
صفحات -
تاریخ انتشار 2001