The Spectral Correlation Theory of Cyclostationary Time-series
نویسنده
چکیده
A spectral correlation theory for cyclostationary time-series is introduced. It is established that a time-series is cyclostationary if and only if there exists a quadratic time-invariant transformation that generates spectral lines, and this is so if and only if the time-series exhibits spectral correlation. Fundamental properties of a characterizing spectral correlation function are developed. These include the effects of periodic modulation and periodically time-variant linear filtering. Relationships between the spectral correlation function and the radar ambiguity function and the Wigner-Ville distribution are explained. The spectral correlation properties of Rice's representation for bandpass time-series are derived. A generalization of the Wiener relation from the spectral density function to the spectral correlation function is developed, and generalizations of the aliasing formula for periodic time-sampling, and the frequency conversion formula for amplitude modulation, from the spectral density function to the spectral correlation function are developed. Zusammenfassung. Vorgestellt wird eine Theorie der spektralen Korrelation zyklisch-station~irer Zeitreihen. Es wird gezeigt, dab eine Zeitreihe dann und nur dann zyklisch-station~ir ist, wenn eine zeitinvariant quadratische Transformation existiert, die ein Linienspektrum erzeugt; und dies ist dann und nur dann so, wenn die Zeitreihe eine spektrale Korrelation aufweist. Die grundlegenden Eigenschaften der zugehSrigen spektralen Korrelationsfunktion werden entwickelt. Diese beinhalten die Auswirkung periodischer Abtastung, einer Frequenzwandlung sowie periodisch zeitver~indedicher linearer Filterung. Die Beziehungen zwischen der spektralen Korrelationsfunktion, der Mehrdeutigkeitsfunktion fLir Radar und der Zeit-Frequenzverteilung der Leistungsdichte nach Wigner-Ville werden erkl~irt. Ebenso werden die Eigenschaften der spektralen Korrelation fiir bandbegrenzte Zeitreihen in der Darstellung von Rice hergeleitet. Eine Verallgemeinerung der Wiener-Gleichungen yon der spektralen Dichtefunktion hin zur spektralen Korrelationsfunktion wird entwickelt. Zus~itzlich wird die Formel fiir Faltungsverzerrungen gleichfSrmig abgetasteter Signale sowie die Formel fiir die Frequenzwandlung bei Amplitudenmodulation auf den Fall der spektralen Korrelationsfunktion erweitert. R~sum~. Une th~orie de la corrrlation spectrale pour des s~ries temporelles cyclostationnaires est introduite. I1 est ~tabli qu'une s~rie temporeile est cyclostationnaire si et seulement si il existe une transformation quadratique invariant dans le temps qui g~n~re des lignes spectrales, et il enest ainsi si et seulement si la s~rie temporelle poss~de une correlation spectrale. Les proprirtrs fondamentales d'une fonction caract~ristique de la correlation spectrale sont drveioppres. Elles comprennent les effets de la modulation prriodique et le filtrage prriodique variant dans le temps. Les relations entre la fonction de correlation spectrale, la fonction d'ambiguit~ en radar et la distribution de Wigner-Ville sont expliqu~es. Les proprirt~s de correlation spectral de la r~presentation de Rice pour des s~ries /i bande limit~e sont ~tablies. Une g~nrralisation de la relation de Wiener de la fonction de densit~ spectrale ~ la fonction de correlation spectrale est d~velopp~e, et les g~n~ralisations de la relation de repliement pour l'~chantillonnage p~riodique et la formule de conversion de frrquence pour la modulation d'amplitude, de la fonction de densit6 spectrale h la correlation spectrale sont d~veloppres.
منابع مشابه
Spectral Correlation of Multicarrier Modulated Signals and Its Application for Signal Detection
Spectral correlation theory for cyclostationary time-series signals has been studied for decades. Explicit formulas of spectral correlation function for various types of analog-modulated and digital-modulated signals are already derived. In this paper, we investigate and exploit the cyclostationarity characteristics for two kinds of multicarrier modulated (MCM) signals: conventional OFDM and fi...
متن کاملOn the Spectral Density Estimation of Periodically Correlated (Cyclostationary) Time Series
We consider the estimation of the spectral density matrix of a periodically correlated (PC) time series (also known as cyclostationary time series). We use the well known relation between the spectral density matrix of a periodically correlated time series and a stationary vector time series (Gladyshev, 1961). The spectral matrix of the stationary vector time series is estimated using the eigen...
متن کاملObservable coherence theory for statistically periodic fields
The framework of cyclostationary random processes is used to develop classical coherence theory for the measurement of statistically periodic stochastic optical fields, such as those produced by pulsed lasers. Cycloergodicity is invoked to show that precise and accurate inferences of the nonstationary process statistics can be made from a single field realization. In particular, many-pulse obse...
متن کاملRiver Discharge Time Series Prediction by Chaos Theory
The application of chaos theory in hydrology has been gaining considerable interest in recent years.Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. Thedynamic structures of the seemingly complex processes, such as river flow variations, might be betterunderstood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,...
متن کاملA Cyclostationary Feature Detector
Cyclostationary models for communications signals have been shown in recent years to ooer many advantages over stationary models. Stationary models are adequate in many situations, but they cause important features of the signal to be overlooked. One such important feature is the correlation between spectral components that many signals exhibit. Cyclostationary models allow this spectral correl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003