Hyperarithmetical Sets

نویسنده

  • YIANNIS N. MOSCHOVAKIS
چکیده

1. Preamble: Kleene [1943], Post [1944] and Mostowski [1947] . . . . . . . . . 2 1A. Post’s degrees of unsolvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1B. Kleene’s arithmetical hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1C. Kleene [1943] vs. Post [1944] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1D. Mostowski [1947] and the analogies . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. On into the transfinite! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2A. Notations for ordinals, S1 and O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2B. The Ha-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2C. Myhill [1955] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2D. Effective grounded recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3. The basic facts about HYP (1950 – 1960) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3A. Codings and uniformities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3B. HYP as effective Borel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3C. Lebesgue [1905] and Mostowski [1951] . . . . . . . . . . . . . . . . . . . . . . . 14 3D. The analytical hierarchy; HYP ⊆ ∆1 . . . . . . . . . . . . . . . . . . . . . . . . . 15 3E. Kleene’s Theorem, HYP = ∆1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3F. Addison [1959] and the revised analogies . . . . . . . . . . . . . . . . . . . . . 21 3G. Relativization and the Kreisel Uniformization Theorem . . . . . . 21 3H. HYP-quantification and the Spector-Gandy Theorem. . . . . . . . . 24 3I. The Kleene [1959a] HYP hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3J. Inductive definability on N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3K. HYP as recursive in E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4A. IND and HYP on abstract structures . . . . . . . . . . . . . . . . . . . . . . . . . 31 4B. Effective descriptive set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5. Appendix: some basic facts and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of Open Sets Having an Hyperarithmetical Code and Innnite Behaviours of Recursive Transition Systems

We extend to the whole class of hyperarithmetical open sets a result from 8] on the separation property, as deened in 1], of some classes of arithmetical open sets. As we do this, we slightly generalize a result from 11] about the position of arithmetical points. We also restate founda-tional connections between language theoretic separation, test equivalence, as deened in 4] over recursive tra...

متن کامل

Intrinsically Hyperarithmetical Sets

The main result proved in the paper is that on every recursive structure the intrinsically hyperarithmetical sets coincide with the relatively intrinsically hyperarithmetical sets. As a side eeect of the proof an eeective version of the Kueker's theorem on deenability by means of innnitary formulas is obtained. 1. Introduction One of the main achievements of the classical recursion theory is th...

متن کامل

Least and Greatest Solutions of Equations over Sets of Integers

Systems of equations with sets of integers as unknowns are considered, with the operations of union, intersection and addition of sets, S + T = {m + n | m ∈ S, n ∈ T}. These equations were recently studied by the authors (“On equations over sets of integers”, STACS 2010 ), and it was shown that their unique solutions represent exactly the hyperarithmetical sets. In this paper it is demonstrated...

متن کامل

Constructing Minimal Pairs of Degrees

We prove that there exist sets of natural numbers A and B such that A and B form a minimal pair with respect to Turing reducibility, enumeration reducibility, hyperarithmetical reducibility and hyperenumer-ation reducibility. Relativized versions of this result are presented as well. 1. Introduction In the present paper we consider four kinds of reducibilities among sets of natural numbers: Tur...

متن کامل

The Complexity of Quickly ORM-Decidable Sets

The Ordinal Register Machine (ORM) is one of several different machine models for infinitary computability. We classify, by complexity, the sets that can be decided quickly by ORMs. In particular, we show that the arithmetical sets are exactly those sets that can be decided by ORMs in times uniformly less than ω. Further, we show that the hyperarithmetical sets are exactly those sets that can b...

متن کامل

Infinitary Queries in Spatial Databases

We describe the use of infinitary logics computable over the real numbers (i.e. in the sense of Blum–Shub–Smale, with full-precision arithmetic) as a constraint query language for spatial databases. We give a characterization of the sets definable in various syntactic classes corresponding to the classical hyperarithmetical hierarchy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015