eSNR Improvement in Indirect Detection of mid-IR Signals by Wavelength Conversion in SOS Waveguides

نویسندگان

  • Y. Huang
  • S. K. Kalyoncu
  • E. K. Tien
  • S. Gao
  • Q. Song
  • F. Qian
  • E. Adas
  • D. Yildirim
چکیده

With a transparency window up to 6 μm, sapphire can serve as a platform to support silicon photonic integrated circuit in MWIR. Planar waveguide devices based on silicon-on-sapphire (SOS) are emerging as a bridge between MWIR and SWIR through frequency band conversion process. While these devices are widely proposed to amplify MWIR signals and generate MWIR source, it can also be inversely utilized to achieve MWIR light detection. Here MWIR signals are down-converted to telecommunication wavelength (1.55 μm) through SOS waveguides and indirectly detected by SWIR detectors. Since detectors at telecommunication wavelengths exhibit superior performances in terms of speed, noise and sensitivity, the indirect detection scheme can be a promising candidate to improve the detection performance. In this report, we analyze performance of the indirect detection of MWIR signals by wavelength conversion in SOS waveguides. Particularly we modeled and compared the noise performance of the indirect detection with direct detection using state-of-the-art MWIR detectors. We show that, in addition to advantages of room temperature and high speed operation, the proposed indirect detection can improve the electrical signal-to-noise ratio up to 50dB, 23dB and 4dB compared to direct detection by PbSe, HgCdTe and InSb detectors respectively. The improvement is more pronounced in detection of weak MWIR signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon on sapphire and SOI photonic devices for mid-infrared and near-IR wavelengths

Conventional SOI waveguide technology, serving as the foundation of near-IR photonics, meets its limitation in mid-IR due to high loss associated with the buried oxide. Silicon-on-sapphire (SOS) waveguides are considered as a good mid-IR alternative, because the transparency window of sapphire is up to 6 μm and SOS waveguides are compatible with SOI technology. We show that properly-designed SO...

متن کامل

Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides

Planar waveguide devices based on silicon-on-sapphire are emerging as a bridge between mid-infrared (IR) and near-IR wavelength through frequency conversion process. We analyze the limits of indirect detection of mid-IR signals by wavelength conversion in such waveguides and investigate signal-to-noise ratio improvement that is attainable with respect to direct detection using state of the art ...

متن کامل

Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides

Raman amplification based on stimulated Stokes Raman scattering (SSRS) and wavelength conversion based on coherent anti-Stokes Raman scattering (CARS) are theoretically investigated in silicon-on-sapphire (SOS) waveguides in the mid-infrared (IR) region. When the linear phase mismatch 1k is close to zero, the Stokes gain and conversion efficiency drop down quickly due to the effect of parametri...

متن کامل

Quasi Phase Matching in SOI and SOS Based Parametric Wavelength Converters

In this study, we demonstrate method for quasi phase matched silicon-on-sapphire waveguides suitable for MWIR wavelength conversion to achieve higher conversion efficiency than that can be achieved in uniform waveguide geometries. In particular we show that periodic change in waveguide width by 0.5μm and hence periodic change in waveguide dispersion can to reset phase accumulation and provide e...

متن کامل

Silicon Based Ultra Wide Discrete Band Conversion

Nonlinear silicon photonics has been an immense research subject in the past several years with promising prospects of delivering chip scale signal modulation, shaping and characterization tools. In particular, broadband parametric process has been considered for applications ranging from wideband light amplifiers to signal characterization and signal shaping tools. Although underlying nonlinea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011