The Genetic Code Boolean Lattice
نویسندگان
چکیده
The algebraic structures of the genetic code are most important to obtain additional information about the semantic code and its applications. In this paper we define two dual Boolean codon lattices of the genetic code using hydrogen bond numbers and the chemical types of bases: purines and pyrimidines. The Boolean lattices reflect the role of hydrophobicity in the distribution of codon assignments to each amino acid. Particularly, the symmetric images of codons with adenine as second base coding to hydrophilic amino acids are always codons with uracil as second base coding to hydrophobic amino acids as they represented in the Hasse diagrams. The Hamming distance between two codons in the Hasse diagram reflects the different hydrophobicities between their respective coded amino acids. Our experiments have demonstrated a small Hamming distance to the wild type HXB2 of almost all the drug-resistant reported mutations in HIV protease gene. The human beta-globin mutant genes have also exhibited similar results. Our research suggests that the Hamming distance between two genes in the molecular evolution process have a minimal value. * Robersy Sánchez: [email protected] Mail address: Apartado postal 697. Santa Clara 1. CP 50100. Villa Clara. Cuba
منابع مشابه
DIRECTLY INDECOMPOSABLE RESIDUATED LATTICES
The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...
متن کاملLattice of weak hyper K-ideals of a hyper K-algebra
In this note, we study the lattice structure on the class of all weak hyper K-ideals of a hyper K-algebra. We first introduce the notion of (left,right) scalar in a hyper K-algebra which help us to characterize the weak hyper K-ideals generated by a subset. In the sequel, using the notion of a closure operator, we study the lattice of all weak hyper K-ideals of ahyper K-algebra, and we prove a ...
متن کاملSemi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices
At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...
متن کاملA novel Lie algebra of the genetic code over the Galois field of four DNA bases.
Starting from the four DNA bases order in the Boolean lattice, a novel Lie Algebra of the genetic code is proposed. Here, the main partitions of the genetic code table were obtained as equivalent classes of quotient spaces of the genetic code vector space over the Galois field of the four DNA bases. The new algebraic structure shows strong connections among algebraic relationships, codon assign...
متن کاملTHE INTERNAL IDEAL LATTICE IN THE TOPOS OF M-SETS
We believe that the study of the notions of universal algebra modelled in an arbitarry topos rather than in the category of sets provides a deeper understanding of the real features of the algebraic notions. [2], [3], [4], [S], [6], [7], [13], [14] are some examples of this approach. The lattice Id(L) of ideals of a lattice L (in the category of sets) is an important ingredient of the categ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004