Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex
نویسندگان
چکیده
Ever since Hubel and Wiesel described orientation selectivity in the visual cortex, the question of how precise selectivity emerges has been marked by considerable debate. There are essentially two views of how selectivity arises. Feed-forward models rely entirely on the organization of thalamocortical inputs. Feedback models rely on lateral inhibition to refine selectivity relative to a weak bias provided by thalamocortical inputs. The debate is driven by two divergent lines of evidence. On the one hand, many response properties appear to require lateral inhibition, including precise orientation and direction selectivity and crossorientation suppression. On the other hand, intracellular recordings have failed to find consistent evidence for lateral inhibition. Here we demonstrate a resolution to this paradox. Feed-forward models incorporating the intrinsic nonlinear properties of cortical neurons and feed-forward circuits (i.e., spike threshold, contrast saturation, and spike-rate rectification) can account for properties that have previously appeared to require lateral inhibition.
منابع مشابه
Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations, whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation sele...
متن کاملDirection Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex
Direction selectivity in simple cells of primary visual cortex, defined from their spike responses, cannot be predicted using linear models. It has been suggested that the shunting inhibition evoked by visual stimulation is responsible for the nonlinear component of direction selectivity. Cortical inhibition would suppress a neuron's firing when stimuli move in the nonpreferred direction, but w...
متن کاملStimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex.
Although several lines of evidence suggest that stimulus selectivity in somatosensory and visual cortices is critically dependent on unselective inhibition, particularly in the thalamorecipient layer 4, no comprehensive comparison of the responses of excitatory and inhibitory cells has been conducted. Here, we recorded intracellularly from a large population of regular spiking (RS; presumed exc...
متن کاملStimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons.
Feature selectivity is a fundamental property of sensory cortex neurons, yet the mechanisms underlying its genesis are not fully understood. Using intracellular recordings in vivo from layers 2-6 of rat barrel cortex, we studied the selectivity of neurons to the angular direction of whisker deflection. The spike output and the underlying synaptic response decreased exponentially in magnitude as...
متن کاملThe linearity and selectivity of neuronal responses in awake visual cortex.
Neurons in primary visual cortex (V1) are frequently classified based on their response linearity: the extent to which their visual responses to drifting gratings resemble a linear replica of the stimulus. This classification is supported by the finding that response linearity is bimodally distributed across neurons in area V1 of anesthetized animals. However, recent studies suggest that such b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 57 شماره
صفحات -
تاریخ انتشار 2008