A single nucleotide polymorphism in the 5' untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers.
نویسندگان
چکیده
RAD51 colocalizes with both BRCA1 and BRCA2, and genetic variants in RAD51 would be candidate BRCA1/2 modifiers. We searched for RAD51 polymorphisms by sequencing 20 individuals. We compared the polymorphism allele frequencies between female BRCA1/2 mutation carriers with and without breast or ovarian cancer and between population-based ovarian cancer cases with BRCA1/2 mutations to cases and controls without mutations. We discovered two single nucleotide polymorphisms (SNPs) at positions 135 g-->c and 172 g-->t of the 5' untranslated region. In an initial group of BRCA1/2 mutation carriers, 14 (21%) of 67 breast cancer cases carried a "c" allele at RAD51:135 g-->c, whereas 8 (7%) of 119 women without breast cancer carried this allele. In a second set of 466 mutation carriers from three centers, the association of RAD51:135 g-->c with breast cancer risk was not confirmed. Analyses restricted to the 216 BRCA2 mutation carriers, however, showed a statistically significant association of the 135 "c" allele with the risk of breast cancer (adjusted odds ratio, 3.2; 95% confidence limit, 1.4-40). BRCA1/2 mutation carriers with ovarian cancer were only about one half as likely to carry the RAD51:135 g-->c SNP. Analysis of the RAD51:135 g-->c SNP in 738 subjects from an Israeli ovarian cancer case-control study was consistent with a lower risk of ovarian cancer among BRCA1/2 mutation carriers with the "c" allele. We have identified a RAD51 5' untranslated region SNP that may be associated with an increased risk of breast cancer and a lower risk of ovarian cancer among BRCA2 mutation carriers. The biochemical basis of this risk modifier is currently unknown.
منابع مشابه
A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers.
BRCA1 and BRCA2 carriers are at increased risk for both breast and ovarian cancer, but estimates of lifetime risk vary widely, suggesting their penetrance is modified by other genetic and/or environmental factors. The BRCA1 and BRCA2 proteins function in DNA repair in conjunction with RAD51. A preliminary report suggested that a single nucleotide polymorphism in the 5' untranslated region of RA...
متن کاملRAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies.
RAD51 is an important component of double-stranded DNA-repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5' untranslated region (UTR) of RAD51, 135G-->C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RA...
متن کاملSingle Nucleotide Polymorphism Analysis of Protamine Genes in Infertile Men
Background Single nucleotide polymorphism (SNPs) are considered as one of the underlying causes of male infertility. Proper sperm chromatin packaging which involves replacement of histones with protamines has profound effect on male fertility. Over 20 SNPs have been reported for the protamine 1 and 2. MaterialsAndMethods The aim of this study was to evaluate the frequency of two previously repo...
متن کاملBreast cancer risk reduction associated with the RAD51 polymorphism among carriers of the BRCA1 5382insC mutation in Poland.
The observed heterogeneity of breast cancer risk among women who carry the same BRCA1 mutation suggests the existence of modifying environmental and genetic factors. The product of the RAD51 gene functions with BRCA1 and BRCA2 in the repair of double-stranded DNA breaks. To establish whether polymorphic variation of RAD51 modifies risk for hereditary breast cancer, we conducted a matched case-c...
متن کاملAnalysis of the G/C polymorphism in the 5'-untranslated region of the RAD51 gene in breast cancer.
The breast cancer suppressor proteins BRCA1 and BRCA2 interact with RAD51, a protein essential for maintaining genomic stability by playing a central role in homology-dependent recombinational repair of the DNA double-strand breaks. Therefore, genetic variability in the RAD51 gene may contribute to the appearance and/or progression of breast cancer. A single nucleotide polymorphism in the 5'- u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 10 9 شماره
صفحات -
تاریخ انتشار 2001