A Facile Mechanism for Recharging Li2O2 in Li−O2 Batteries
نویسندگان
چکیده
Li−air is a novel battery technology with the potential to offer very high specific energy, but which currently suffers from a large charging overpotential and low power density. In this work, we use ab initio calculations to demonstrate that a facile mechanism for recharging Li2O2 exists. Rather than the direct decomposition pathway of Li2O2 into Li and O2 suggested by equilibrium thermodynamics, we find an alternative reaction pathway based on topotactic delithiation of Li2O2 to form off-stoichiometric Li2−xO2 compounds akin to the charging mechanism in typical Li-ion intercalation electrodes. The low formation energy of bulk Li2−xO2 phases confirms that this topotactic delithiation mechanism is rendered accessible at relatively small overpotentials of ∼0.3−0.4 V and is likely to be kinetically favored over Li2O2 decomposition. Our findings indicate that at the Li2O2 particle level there are no obstacles to increase the current density, and point to an exciting opportunity to create fast charging Li−air systems.
منابع مشابه
High‐Performance Li–O2 Batteries with Controlled Li2O2 Growth in Graphene/Au‐Nanoparticles/Au‐Nanosheets Sandwich
The working of nonaqueous Li-O2 batteries relies on the reversible formation/decomposition of Li2O2 which is electrically insulating and reactive with carbon and electrolyte. Realizing controlled growth of Li2O2 is a prerequisite for high performance of Li-O2 batteries. In this work, a sandwich-structured catalytic cathode is designed: graphene/Au-nanoparticles/Au-nanosheets (G/Au-NP/Au-NS) tha...
متن کاملCritical Descriptor for the Rational Design of Oxide-Based Catalysts in Rechargeable Li–O2 Batteries: Surface Oxygen Density
Li−O2 batteries provide high-capacity energy storage, but for aprotic Li−O2 batteries, it is reported that the charge−discharge efficiency is ultimately limited by the crystal growth of insoluble Li2O2 on the porous cathode. Catalysts have been reported to improve the nucleation and morphology of Li2O2, which helps achieve high energy densities. We provide a new insight into the catalytic mecha...
متن کاملA PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control.
Albeit ultrahigh in energy density, the Li-O2 battery technology still suffers from the high overpotential of Li2O2 oxidation upon charging and the low cyclability. In the present work, we use Pt2Ru/C as the oxygen-electrode catalyst and study how it improves the cell performance and changes the reaction mechanism, as compared with a carbon electrode. Multiple methods, including X-ray diffracti...
متن کاملImpact of Space-Charge Layers on Sudden Death in Li/O2 Batteries.
The performance of Li/O2 batteries is thought to be limited by charge transport through the solid Li2O2 discharge product. Prior studies suggest that electron tunneling is the main transport mechanism through thin, compact Li2O2 deposits. The present study employs a new continuum transport model to explore an alternative scenario, in which charge transport is mediated by polaron hopping. Unlike...
متن کاملCorrelating Li/O2 cell capacity and product morphology with discharge current.
The discharge rate is critical to the performance of lithium/oxygen batteries: it impacts both cell capacity and discharge-phase morphology, and in so doing may also affect the efficiency of the oxygen-evolution reaction during recharging. First-discharge data from tens of Li/O2 cells discharged across four rates are analyzed statistically to inform these connections. In the practically signifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013