Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae.

نویسندگان

  • Mohammed A S Khan
  • P Boon Chock
  • Earl R Stadtman
چکیده

In our previous study, we established that inhibition of apoptosis by the general caspase inhibitor is associated with an increase in the level of oxidized proteins in a multicellular eukaryotic system. To gain further insight into a potential link between oxidative stress and apoptosis, we carried out studies with Saccharomyces cerevisiae, which contains a gene (YCA1) that encodes synthesis of metacaspase, a homologue of the mammalian caspase, and is known to play a crucial role in the regulation of yeast apoptosis. We show that upon exposure to H(2)O(2), the accumulation of protein carbonyls is much greater in a Delta yca1 strain lacking the YCA1 gene than in the wild type and that apoptosis was abrogated in the Delta yca1 strain, whereas wild type underwent apoptosis as measured by externalization of phosphatidylserine and the display of TUNEL-positive nuclei. We also show that H(2)O(2)-mediated stress leads to up-regulation of the 20S proteasome and suppression of ubiquitinylation activities. These findings suggest that deletion of the apoptotic-related caspase-like gene leads to a large H(2)O(2)-dependent accumulation of oxidized proteins and up-regulation of 20S proteasome activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism (S) of Metal-Induced Apoptosis in Saccharomyces Cerevisiae

Heavy metals, such as copper and cadmium have been linked to a number of cellular dysfunctions in single and multicellular organisms that are associated with apoptosis. The yeast, Saccharomyces cerevisiae, provides a valuable model for elucidating apoptosis mechanisms, and this study extends that capability to Cu and Cd-induced apoptosis. We demonstrate that S. cerevisiae undergoes a glucose-de...

متن کامل

Yeast caspase 1 suppresses the burst of reactive oxygen species and maintains mitochondrial stability in Saccharomyces cerevisiae

Caspases are a family of cysteine proteases that play essential roles during apoptosis, and we presume some of them may also protect the cell from oxidative stress. We found that the absence of yeast caspase 1(Yca1)in Saccharomyces cerevisiae leads to a more intense burst of mitochondrial reactive oxygen species (ROS). In addition, compared to wild type yeast cells, the ability of yca1 mutant c...

متن کامل

Bre1p-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae.

BRE1 encodes an E3 ubiquitin protein ligase that is required for the ubiquitylation of histone H2B at lysine 123 (K123). Ubiquitylation of this histone residue is involved in a variety of cellular processes including gene activation and gene silencing. Abolishing histone H2B ubiquitylation also confers X-ray sensitivity and abrogates checkpoint activation after DNA damage. Here we show that Sac...

متن کامل

Metacaspase Yca1 is required for clearance of insoluble protein aggregates.

In complex organisms, caspase proteases mediate a variety of cell behaviors, including proliferation, differentiation, and programmed cell death/apoptosis. Structural homologs to the caspase family (termed metacaspases) engage apoptosis in single-cell eukaryotes, yet the molecular mechanisms that contribute to nondeath roles are currently undefined. Here, we report an unexpected role for the Sa...

متن کامل

p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.

The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In the yeast Saccharomyces cerevisiae, the overexpression of the human p53 leads to growth inhibition and apoptotic cell death on minimal medium. In the present work, we show that p53-expressing cells are more susceptible to cell death after an apoptotic stimulus such as H2O2. The analysis of mutan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 48  شماره 

صفحات  -

تاریخ انتشار 2005