A Decremental Algorithm for Maintaining Frequent Itemsets in Dynamic Databases
نویسندگان
چکیده
Data mining and machine learning must confront the problem of pattern maintenance because data updating is a fundamental operation in data management. Most existing data-mining algorithms assume that the database is static, and a database update requires rediscovering all the patterns by scanning the entire old and new data. While there are many efficient mining techniques for data additions to databases, in this paper, we propose a decremental algorithm for pattern discovery when data is being deleted from databases. We conduct extensive experiments for evaluating this approach, and illustrate that the proposed algorithm can well model and capture useful interactions within data when the data is decreasing.
منابع مشابه
SA-IFIM: Incrementally Mining Frequent Itemsets in Update Distorted Databases
The issue of maintaining privacy in frequent itemset mining has attracted considerable attentions. In most of those works, only distorted data are available which may bring a lot of issues in the datamining process. Especially, in the dynamic update distorted database environment, it is nontrivial to mine frequent itemsets incrementally due to the high counting overhead to recompute support cou...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملEfficient Data Mining for Frequent Itemsets in Dynamic and Distributed Databases
Data Mining is one of the central activities associated with understanding and exploiting the world of digital data. It is the mechanized process of modeling large databases by means of discovering useful patterns. A frequent itemset is a pattern describing a relevant subset of the data, and a collection of frequent itemsets is particularly useful because it is an extremely compact model of the...
متن کاملPost-mining: maintenance of association rules by weighting
This paper proposes a new strategy for maintaining association rules in dynamic databases. This method uses weighting technique to highlight new data. Our approach is novel in that recently added transactions are given higher weights. In particular, we look at how frequent itemsets can be maintained incrementally. We propose a competitive model to ‘promote’ infrequent itemsets to frequent items...
متن کاملMining Frequent Itemsets Over Arbitrary Time Intervals in Data Streams
Mining frequent itemsets over a stream of transactions presents di cult new challenges over traditional mining in static transaction databases. Stream transactions can only be looked at once and streams have a much richer frequent itemset structure due to their inherent temporal nature. We examine a novel data structure, an FP-stream, for maintaining information about itemset frequency historie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005