MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3
نویسندگان
چکیده
The molecules that regulate the apoptosis cascade are also involved in differentiation and syncytial fusion in skeletal muscle. MyoD is a myogenic transcription factor that plays essential roles in muscle differentiation. We noticed that MyoD(-/-) myoblasts display remarkable resistance to apoptosis by down-regulation of miR-1 (microRNA-1) and miR-206 and by up-regulation of Pax3. This resulted in transcriptional activation of antiapoptotic factors Bcl-2 and Bcl-xL. Forced MyoD expression induces up-regulation of miR-1 and miR-206 and down-regulation of Pax3, Bcl-2, and Bcl-xL along with increased apoptosis in MyoD(-/-) myoblasts. In contrast, MyoD gene knockdown increases cell survival of wild-type myoblasts. The 3' untranslated region of Pax3 mRNA contains two conserved miR-1/miR-206-binding sites, which are required for targeting of these microRNAs (miRNAs). Therefore, these data suggest that MyoD not only regulates terminal differentiation but also apoptosis through miRNA-mediated down-regulation of Pax3. Finally, MyoD, miR-1, and miR-206 are all down-regulated in quiescent satellite cells, which may be required for maintenance of muscle stem cells.
منابع مشابه
Retinoic acid is both necessary for and inhibits myogenic commitment and differentiation in the chick limb.
Retinoic acid (RA) plays an essential role in the development of many embryonic tissues, including the developing tetrapod limb bud. At early stages of limb development, RA levels are highest proximally and regulate the migration of myoblasts into the limb. As the premyogenic progenitor cells migrate into the limb and accumulate in premuscle masses, they express Pax3 and Meox2. Myogenic differe...
متن کاملEmerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes.
X-linked Emery-Dreifuss muscular dystrophy (X-EDMD) is caused by mutations in the inner nuclear membrane protein emerin. Previous studies have shown that emerin binds to and inhibits the activity of LIM domain only 7 (Lmo7), a transcription factor that regulates the expression of genes implicated in X-EDMD. Here, we analyzed Lmo7 function in C2C12 myoblast differentiation and its regulation by ...
متن کاملMsx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors.
The migration of myogenic precursors to the vertebrate limb exemplifies a common problem in development - namely, how migratory cells that are committed to a specific lineage postpone terminal differentiation until they reach their destination. Here we show that in chicken embryos, expression of the Msx1 homeobox gene overlaps with Pax3 in migrating limb muscle precursors, which are committed m...
متن کاملIncreased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle.
MyoD is a myogenic master transcription factor that plays an essential role in muscle satellite cell (muscle stem cell) differentiation. To further investigate the function of MyoD in satellite cells, we examined the transplantation of satellite cell-derived myoblasts lacking the MyoD gene into regenerating skeletal muscle. After injection into injured muscle, MyoD(-/-) myoblasts engrafted with...
متن کاملIntegrated Functions of Pax3 and Pax7 in the Regulation of Proliferation, Cell Size and Myogenic Differentiation
Pax3 and Pax7 are paired-box transcription factors with roles in developmental and adult regenerative myogenesis. Pax3 and Pax7 are expressed by postnatal satellite cells or their progeny but are down regulated during myogenic differentiation. We now show that constitutive expression of Pax3 or Pax7 in either satellite cells or C2C12 myoblasts results in an increased proliferative rate and decr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 191 شماره
صفحات -
تاریخ انتشار 2010